Skip to content ↓

Topic

NASA

Download RSS feed: News Articles / In the Media / Audio

Displaying 136 - 150 of 505 news clips related to this topic.
Show:

Popular Science

Scientists from around the world, including researchers at MIT, have found evidence of past chemical reactions between liquid water and carbon-compounds on Mars, reports Laura Baisas for Popular Science. “We believe we have found these kinds of liquid water environments and organic compounds together. That’s sort of the limit to how we can describe what we call habitability,” explains postdoc Eva Linghan Scheller.

Popular Science

Researchers from MIT’s Center for Bits and Atoms are developing fully autonomous robots that can work together to assemble “almost any conceivable structure or product, including bigger iterations of themselves as their projects scale larger,” reports Andrew Paul for Popular Science. “Potential uses include building structures to aid in protection against sea level rise and coastal erosion,” writes Paul, “as well as 3D printed houses and space habitat construction.”

The Washington Post

A team of scientists, including researchers from MIT, have found that Martian rocks uncovered by NASA’s Perseverance contain “signs of a watery past and are loaded with the kind of organic molecules that are the foundations for life as we know it,” reports Joel Achenbach for The Washington Post. “On balance, we are actually super lucky that there are igneous rocks in the crater, and that we happened to land right on them, since they are ideal for determining ages and studying the past history of Mars’ magnetic field,” says Prof. Benjamin Weiss.

VICE

NASA’s Perseverance rover has uncovered evidence of habitable conditions that once existed on Mars, reports Becky Ferreira for Vice. “In that kind of environment, we’re seeing very, very strange chemistry which is not common on Earth at all, but seems to be more common on Mars because we’ve seen these kinds of materials in almost all the missions now,” says postdoctoral fellow Eva Scheller.

TechCrunch

Researchers from MIT’s Center for Bits and Atoms are developing robots that can effectively self-assemble and could even build large structures, reports Brian Heater for TechCrunch. “At the system’s center are voxels (a term borrowed from computer graphics), which carry power and data that can be shared between pieces,” writes Heater. “The pieces form the foundation of the robot, grabbing and attaching additional voxels before moving across the grid for further assembly.”

Bloomberg

Prof. Danielle Wood speaks with Bloomberg about the future of space technology and sustainability. Wood explains that she and her team are focused on developing a “space sustainability rating, which is a method to incentivize organizations to actually do what they can to reduce space debris now in Earth’s orbit.” 

Forbes

Researchers from the MIT Space Exploration Initiative are sending two payloads to the moon with Lunar Outpost, a space technology company, reports Arianna Johnson for Forbes. “The Resource camera will generate 3-3 images of different lunar points of interest,” writes Johnson. “The second payload is the AstroAnt, a miniature rover the size of a matchbox that will drive atop the MAPP rover and take contactless measurements of the rover’s radiator.”  

The Boston Globe

Prof. Paulo Lozano speaks with Boston Globe reporter Travis Anderson about NASA’s recent asteroid test, which successfully shifted the orbit of a harmless asteroid. The mission had a “truly inspirational result,” says Lozano. “We’re getting closer to hav[ing] the ability to protect our planet from one of the most destructive forces in nature.”

CBS News

Prof. Richard Binzel speaks with CBS News reporter David Pogue about asteroids and the Torino scale, a 10-point danger scale for asteroids that he created. "All the objects [asteroids] we know of today reside at zero or one, which simply means they're so small that they don't matter, or that we know for sure there's no impact possibility," says Binzel.

7 News

Prof. Paulo Lozano speaks with 7 News about NASA’s Double Asteroid Redirection Test (DART) spacecraft, which slammed into an asteroid Monday night, demonstrating how an asteroid threatening Earth could be deflected. Lozano notes that there are millions of space rocks in the solar system, “many of them are characterized but the grand majority are not, and these objects can basically take out a city. Being prepared for these kinds of events will be very important.”

Science

Prof. Tanja Bosak speaks with Science reporter Eric Hand about how scientists plan to study rock samples from Mars for clues as to whether the planet once had a magnetic field and for signs of ancient life, such as the tough lipid molecules that can form cell walls. “You hope for an outline of a cell,” she says. “You will never find peptides and proteins, but lipids can persist.”

Los Angeles Times

Prof. Dava Newman, director of the MIT Media Lab, speaks with Los Angeles Times reporter Samantha Masunaga about the delay of the Artemis 1 moon mission. “We don’t take chances, especially on such a huge, powerful rocket,” said Newman, a former NASA deputy administrator. “Everything has to work perfectly.”

CBS Boston

Prof. Paulo Lozano speaks with CBS Boston about the Artemis 1 moon mission and the reasons behind the recent launch delays. "It's very exciting because the last time we were on the moon was during the Apollo years and we didn't stay. Our current generation has just a vague memory of that," says Lozano. "All we learn by going to the moon we can apply to go to other places in the solar system."

The Washington Post

Washington Post reporter Pranshu Verma highlights how MIT researchers have demonstrated that the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) can convert carbon dioxide into breathable oxygen on Mars. “It’s what explorers have done since time immemorial,” explains Prof. Jeffrey Hoffman. “Find out what resources are available where you’re going to and find out how to use them.”

The Boston Globe

MIT researchers have used the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) to successfully generate oxygen on Mars, reports Martin Finucane for The Boston Globe. “This is the first demonstration of actually using resources on the surface of another planetary body and transforming them chemically into something that would be useful for a human mission,” says Prof. Jeffrey Hoffman. “It’s historic in that sense.”