Skip to content ↓

Topic

Nanoscience and nanotechnology

Download RSS feed: News Articles / In the Media / Audio

Displaying 121 - 135 of 349 news clips related to this topic.
Show:

Fast Company

MIT startup Ubiquitous Energy has created transparent solar panels that can also generate electricity, reports Adele Peters for Fast Company. “The windows, with two panes of glass that are sealed together, have wires that can be connected either directly to something next to the window – such as a light or electronic blinds – or connected to a battery in the building or back into the electric grid,” writes Peters.

Mashable

MIT researchers have developed a new technique for producing low-voltage, power-dense actuators that can propel flying microrobots, reports Danica D'Souza for Mashable. “The new technique lets them make soft actuators that can carry 80 percent more payload,” D’Souza reports. 

Smithsonian Magazine

MIT scientists have discovered a way to watch and record the development of butterfly scales from the inside of a butterfly’s chrysalis, reports Elizabeth Gamillo for Smithsonian Magazine. “The team plans on further exploring the structure of butterfly wings and the reasoning behind the ridged design,” writes Gamillo.

CNET

CNET science writer Monisha Ravisetti spotlights MIT researchers who have successfully recorded the scale formation of butterfly wings during its transformation. “Understanding their schematics could ultimately benefit constructed materials like windows and thermal systems and even bring an ethereal quality to textiles,” writes Ravisetti.

Popular Science

Popular Science reporter Hannah Seo writes that MIT researchers have developed a way to watch and record how the microscopic scales on a butterfly’s wings grow and tile themselves as the butterfly develops inside its chrysalis. The researchers hope to “use butterfly scales as inspiration for the design of new materials,” writes Seo. “Butterfly scales have other fascinating properties such as water repellency and the ability to regulate temperature.”

Ars Technica

ARS Technica senior writer Jennifer Ouellette spotlights MIT researchers who have successfully recorded the structural growth of butterfly wings inside its chrysalis for the first time. “A lot of these stages were understood and seen before, but now we can stitch them all together and watch continuously what’s happening, which gives us more information on the detail of how scales form,” says research assistant Anthony McDougal. 

USA Today

MIT researchers are developing plants that can glow in the dark and provide light all night, reports USA Today. “The high-tech plants are embedded with nanoparticles that absorb light during the day or from other light sources like LEDs. After the lights go out, they slowly release that stored energy as luminescence over time.”

New York Times

New York Times reporter Steve Lohr spotlights the origin and history of MIT startup Gingko Bioworks, a synthetic biology company founded with a “shared belief that biology could be made more like computing with reusable code and standard tools instead of the bespoke experiments of traditional biology." Jason Kelly ’03, PhD ’08, one of the founders of MIT startup Ginkgo Bioworks and the company’s chief executive, explains that “the ultimate goal for Ginkgo is to make it as easy to program a cell as it is to program a computer.”

The Wall Street Journal

In an article for The Wall Street Journal about efforts to help repair or prevent cartilage damage before osteoarthritis sets in, Laura Landro spotlights how MIT researchers are developing “ways to get drugs into the cartilage tissue and keep them there. They are using microscopic particles called nanocarriers to deliver IGF-1, an insulin like growth factor, to the tight mesh that holds cartilage in joints.”

TechCrunch

TechCrunch reporter Devin Coldewey writes that MIT researchers have created a new nanoengineered material that could prove tougher than Kevlar or steel. “Made of interconnected carbon ‘tetrakaidecahedrons,’ the material absorbed the impact of microscopic bullets in spectacular fashion,” writes Coldewey.

Popular Mechanics

MIT researchers have developed new programmable fibers that could help transform clothing into wearable computers, reports Kyle Mizokami for Popular Mechanics. “The polymer fibers contain hundreds of tiny silicon microchips that, once electrified, can sustain a digital connection across tens of meters,” Mizokami writes.

Forbes

Forbes contributor Eric Tegler spotlights how MIT researchers are developing a fiber with digital capabilities. “Individuals wearing garments with digital fibers could be alerted to vital information about their physiology and environmental exposures, and share health/injury and location data with support forces,” Tegler explains.

Mashable

Mashable spotlights how MIT’s baseball pitching coach is using motion capture technology to help analyze and teach pitching techniques. Using the technology, Coach Todd Carroll can “suggest real-time adjustments as a player is pitching so that just one session using the technology improves their game.”

United Press International (UPI)

UPI reporter Brooks Hays writes that researchers from MIT and other institutions have developed a programmable digital fiber that can capture, store and analyze data. The technology could “be paired with machine learning algorithms and used to make smart fabrics to record health data and aid medical diagnosis,” writes Hays.

The Economist

The Economist spotlights how Colgate will be using the super slippery, food-safe coating developed by LiquiGlide, an MIT startup, to create a new line of toothpastes “that promise to deliver every last drop.” The Economist notes: “Besides pleasing customers who like to get their money’s worth, the new, slippery toothpaste tubes should help with recycling.”