Skip to content ↓

Topic

Nanoscience and nanotechnology

Download RSS feed: News Articles / In the Media / Audio

Displaying 241 - 255 of 349 news clips related to this topic.
Show:

CNN

MIT researchers have used computer models to turn flakes of graphene into 3-D structures, creating one of lightest, strongest materials, writes Nicola Davison for CNN. "Once they combine and fuse together, all the flakes contribute to the strength of the overall structure," research scientist Zhao Qin explains. 

Wired

Researchers at MIT have fused flakes of graphene into a sponge-like shape, creating one of the strongest lightweight materials, writes James Temperton for Wired. Flakes of graphene were compressed using heat and pressure, then 3-D printers were used to create a “strong, stable structure similar to some corals” for stress tests. 

CBS News

MIT researchers have developed a new ultra-light material that is ten times stronger than steel, reports Tia Ghose for CBS News. Ghose explains that in the future, the material could potentially be used to build bridges, “which would be ultrastrong, lightweight, and insulated against heat and cold because of all the myriad air pockets in the material.”

United Press International (UPI)

By fusing graphene into a porous 3-D form, MIT researchers have created a strong, lightweight material, writes Brooks Hays for UPI. “The findings suggest a 3D material's tensile and compressive properties are dependent on the geometry of its structure, not the strength of the 2D material from which it is derived,” explains Hays.

Boston Globe

Prof. James Collins has been named one of The Boston Globe’s “2016 Bostonians of the Year” for his work developing a paper-based test that can detect the Zika virus in just a few hours. Neil Swidey notes that Collins also developed a “workflow for how this new platform could be adapted to meet future crises.”

Forbes

MIT researchers have found that water can stay frozen, even when heated to boiling temperatures, when molecules are placed inside tiny carbon nanotubes, reports Sam Lemonick for Forbes. The researchers hope to use the “ice-filled tubes as wires to move protons,” a key step in creating hydrogen fuel cells.

Boston 25 News

FOX 25 reporter Elizabeth Hopkins visited the lab of Prof. Michael Strano to learn more about his nanobionic spinach plant research. "What we've done is we've transformed a living plant into a chemical sensor,” Strano says.

Scientific American

Scientists at MIT have developed spinach plants that can detect and alert people about explosives, reports Matthew Gunther for Scientific American. Grad student Min Hao Wong explains that plants are good sensors as “through the transpiration process, plants draw up water and other analytes from the ground, and can accumulate even trace levels of analytes within [their] tissues.”

CBS News

CBS News reporter Brian Mastroianni writes that MIT researchers have engineered spinach plants to serve as sensors by embedding the leaves with carbon nanotubes. Mastroianni explains that the researchers feel this work shows that “plants could ultimately serve as great collaborators in helping people better understand the environment around them.”

Guardian

MIT researchers have created bomb-detecting spinach by embedding fluorescent nanoparticles into the plant’s leaves, The Guardian reports. Plants are ideal for this detection system because they “have built-in power sources and are able to move fluids around very efficiently,” explains Prof. Michael Strano. 

BBC News

BBC News reporter Paul Rincon writes that by embedding carbon nanotubes into spinach leaves, MIT researchers have created plants that can detect explosives. “The plants could be used for defense applications, but also to monitor public spaces for terrorism related activities,” explains Prof. Michael Strano. 

CBC News

CBC reporter Nora Young explores how MIT researchers have developed a new material, inspired by beaver fur, that could help keep surfers warm. “In sports technology there's a great need for textiles that have great insulating properties in water, but still let you stay agile and nimble,” explains graduate student Alice Nasto. 

Boston Magazine

MIT researchers have developed a new technique to stop the spread of cancer cells through the body by delivering microRNAs to the site of the primary tumor, reports Hallie Smith for Boston Magazine. The technique “may correct gene disruptions that put a patient at risk of metastatic cancer,” Smith explains. 

Live Science

Edd Gent writes for LiveScience that MIT researchers “have devised a new fabrication process that uses ultraviolet (UV) light to print successive layers of polymers into 3D, Transformer-like structures that ‘remember’ their shapes.”

Fortune- CNN

David Morris writes for Fortune that researchers at the MIT spinoff SolidEnergy Systems are developing a longer-lasting lithium metal battery for smartphones and wearables. Morris writes that the battery has “about double the energy density of today’s standard lithium-ion battery.”