Skip to content ↓

Topic

MIT Schwarzman College of Computing

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 472 news clips related to this topic.
Show:

Scientific American

Prof. Erik Demaine and his colleagues have solved a longstanding mathematical puzzle called “Dudeney’s dissection,” which involves dissecting an equilateral triangle into the smallest number of pieces that could be rearranged into a square, reports Lyndie Chiou for Scientific American. “Each of those pieces could have arbitrarily many edges to it, and the coordinates of those cuts start at arbitrary points,” says Demaine, of what makes the puzzle so challenging. “You have these continuous parameters where there’s lots and lots of infinities of possible choices that makes it so annoyingly hard. You can’t just brute-force it with a computer.”

TN Tecno

[Originally in Spanish] MIT researchers have developed a new technique to educate robots by increasing human input, reports Uriel Bederman for TN Tecno.  “We can’t expect non-technical people to collect data and fine-tune a neural network model," explains graduate student Felix Yanwei Wang. "Consumers will expect the robot to work right out of the box, and if it doesn’t, they’ll want an intuitive way to customize it. That’s the challenge we’re addressing in this work."

FOX 28

MIT scientists have developed a new programmable fiber that can be stitched into clothing to help monitor the wearer’s health, reports Stephen Beech for FOX 28 News. “The gear has been tested by U.S. Army and Navy personnel during a month-long winter research mission to the Arctic,” Beech notes. 

New Scientist

Prof. Ryan Williams speaks with New Scientist reporter Matthew Sparkes about his finding concerning the relationship between the amount of memory a computation requires and how long it takes, a discovery that has “wowed computer scientists.” Says Williams of the discovery: “It kind of shakes my world view. I’m still just shocked that it even exists.”

Dezeen

Dezeen reporter Rima Sabina Aouf spotlights how MIT researchers have created a “thin and flexible fiber computer and woven it into clothes, suggesting a potential alternative to current wearable electronics.” Prof. Yoek Fink explains: "In the not-too-distant future, fiber computers will allow us to run apps and get valuable health care and safety services from simple everyday apparel.” He adds: "The convergence of classical fibers and fabrics with computation and machine learning has only begun.” 

Ars Technica

MIT engineers have manufactured a programmable computer fiber that can be woven into clothing and used to help monitor the wearer’s vital signs, reports Jennifer Ouellette for Ars Technica. “The long-term objective is incorporating fiber computers into apparel that can sense and respond to changes in the surrounding environment and individual physiology,” Ouellette notes. 

New Scientist

New Scientist reporter Alex Wilkins spotlights how MIT researchers have created a “computer that can be stitched into clothes, made from chips that are connected in a thread of copper and elastic fiber.” U.S. Army and Navy members will  be testing the use of the fiber computer to help monitor health conditions and prevent injury during a monthlong mission to the Arctic. Prof. Yoel Fink explains: “We’re getting very close to a point where we could write apps for fabrics and begin to monitor our health and do all kinds of things that a phone, frankly, cannot do.” 

Forbes

Writing for Forbes, Paula Schneider, CEO of Susan G. Komen, highlights Prof. Regina Barzilay’s research using AI to detect breast cancer. “Using her own mammograms in her research at MIT, Dr. Barzilay demonstrated how AI could have detected her breast cancer much earlier, potentially improving her prognosis,” writes Schneider. “Studies show that incorporating AI into mammogram analysis boosts cancer detection rates by 20%, without increasing false positives. This is a significant leap forward, as early detection is key to a better chance at positive outcomes and survival.” 

Tech Briefs

Research Assistants Maisy Lam and Laura Dodds speak with Tech Briefs reporter Andrew Corselli about their work developing MiFly, a new approach that “enables a drone to self-localize, or determine its position, in indoor, dark, and low-visibility environments.” Dodds explains: “Our high-level idea was we can place a millimeter wave sensor on the drone, and it can localize itself with respect to a sticker that we place on the wall, a millimeter wave tag. This would allow us to provide a localization system in these challenging environments with minimal infrastructure.”

Noticias Telemundo

In this interview (in Spanish), graduate students Suhan Kim and Yi-Hsuan (Nemo) Hsiao speak with Telemundo correspondent Miriam Arias about their work developing insect-sized robots to assist with agricultural needs. “There might be one year where you have a lot of bees in the field that help you pollinate everything. Maybe the next year, it might be affected by the temperature or something [and] you just don’t have enough bees to help you do so,” explains Hsiao. 

Interesting Engineering

MIT engineers have developed a new training method to help ensure the safe operation of multiagent systems, including robots, search-and-rescue drones and self-driving cars, reports Jijo Malayil for Interesting Engineering. The new approach “doesn’t focus on rigid paths but rather enables agents to continuously map their safety margins—the boundaries within which they must stay,” writes Malayil. 

Tech Briefs

Graduate students Suhan Kim and Yi-Hsuan (Nemo) Hsiao speak with Tech Briefs reporter Andrew Corselli about their work developing insect-sized robots capable of artificial pollination. “Typical drones use electromagnetic motors plus propellers. But, our system is a little different in that we are primarily using an artificial muscle,” explains Kim. 

Reuters

Researchers from MIT and elsewhere have develop insect-sized robots that could one day be used to help with farming practices like artificial pollination, reports Alice Rizzo for Reuters. "These type of robots will open up a very new type of use case," says graduate student Suhan Kim. "We can start thinking of using our robot, if it works well, for tools like indoor farming."

The Boston Globe

In a letter to the editor of The Boston Globe, Vice President for Research Ian Waitz addresses the importance of research staff at the Institute, noting that “research universities educate through research.” Waitz emphasizes: “At MIT, there has been double-digit real growth in our on-campus research enterprise over the past 11 years along with growth in our graduate student body. With that come more people, and while these staff may not be directly involved in student classroom instruction, the research they conduct is crucial to the hands-on education that MIT students receive and to the real-world solutions that originate at the school.”

New Scientist

Researchers at MIT have developed an insect-like, flying robot capable of performing acrobatic maneuvers and hovering in the air for up to 15 minutes without failing, reports Alex Wilkins for New Scientist. “By having a hugely increased [flying] lifetime, we were able to work on the controller parts so that the robot can achieve precise trajectory tracking, plus aggressive maneuvers like somersaults,” says graduate student Suhan Kim.