Skip to content ↓

Topic

Medicine

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 573 news clips related to this topic.
Show:

Popular Science

Researchers at MIT and elsewhere have developed a new device “designed to detect the signs of an overdose and automatically deliver a dose of naloxone in as little as 10 seconds,” reports Tom Hawking for Popular Science. “The device [which has an associated smartphone app] also has a built-in alert system with auditory and tactile signals to wake the user, providing an alternative for those without smartphones or with uncharged devices,” says Prof. Giovanni Traverso. 

Interesting Engineering

Interesting Engineering reporter Shubhangi Dua describes a new implantable device developed by MIT researchers that can detect and automatically treat an opioid overdose. “Having an automated robotic system that can sense and reverse opiate overdose could be transformational,” says Prof. Giovanni Traverso, “particularly for high-risk populations.” 

Popular Science

MIT scientists have developed an implantable sensor that could “detect the signs of an overdose and automatically deliver a dose of naloxone in as little as 10 seconds,” reports Tom Hawking for Popular Science. "The long-term benefits of preventing fatal overdoses and reducing healthcare costs related to overdose treatment are significant factors that support the value of this technology,” explains Prof. Giovanni Traverso. 

IFL Science

MIT researchers have discovered how propofol, a commonly used anesthetic, works on the brain, reports Francesca Benson for IFL Science. The research studied “the differences between an awake brain and one under anesthesia by looking at the stability of the brain’s activity,” writes Bensen. 

Gizmodo

MIT scientists have discovered how propofol, a commonly used anesthetic, induces unconsciousness, reports Adam Kovac for Gizmodo. “The new research indicates that [propofol] works by interfering with a brain’s ‘dynamic stability’ – a state where neurons can respond to input, but the brain is able to keep them from getting too excited,” explains Kovac. 

STAT

Prof. Bob Langer and Prof. Giovanni Traverso have co-founded Syntis Bio, a biotech company that will use technology to “coat the stomach and potentially other organ surfaces, [change] the way that drugs are absorbed or, in the case of obesity, which hormones are triggered,” reports Allison DeAngelis for STAT

Newsweek

MIT have developed a new ingestible vibrating capsule that could potentially be used to aid weight loss, writes Newsweek’s Robyn White. Prof. Giovanni Traverso said the capsule “could facilitate a paradigm shift in potential therapeutic options for obesity and other diseases affected by late stomach fullness.”

Interesting Engineering

MIT engineers have developed a new adhesive, low-cost hydrogel that can stop fibrosis often experienced by people with pacemakers and other medical devices, reports for Maria Bolevich Interesting Engineering. “These findings may offer a promising strategy for long-term anti-fibrotic implant–tissue interfaces,” explains Prof. Xuanhe Zhao. 

Forbes

Forbes selects innovators for the list’s Healthcare & Science category, written by senior contributor Yue Wang. On the list is MIT PhD candidate Yuzhe Yang, who studies AI and machine learning technologies capability to monitor and diagnose illnesses such as Parkinson's disease.

HealthDay News

MIT researchers have developed microneedle patches that are capable of restoring hair growth in alopecia areata patients, reports Ernie Mundell for HealthDay. The team’s approach includes a, “patch containing myriad microneedles that is applied to the scalp,” writes Mundell. “It releases drugs to reset the immune system so it stops attacking follicles.” 

New Scientist

Prof. Giovanni Traverso and colleagues have developed a new ingestible sensor that could be used to help diagnose gastrointestinal conditions, reports Jeremy Hsu for New Scientist. “Eventually, the futuristic device could provide treatments for gut illnesses through electrical stimulation via additional electrodes embedded in the sensor,” Hsu notes.  

Time Magazine

Prof. Linda Griffith and Stuart Orkin '67 were named to this year’s Time 100 Health list, which recognizes innovators leading the way to new health solutions. Griffith, who was honored for her work engineering a uterine organoid to study endometriosis, explains that in the future engineered organoids could be used to find the most effective treatments for patients. “We have all the genetic information and all the information from the patient’s exposure to infections, environmental chemicals, and stress that would cause the tissues to become deranged in some way, all captured in that organoid,” Griffith explains. 

ShareAmerica

ShareAmerica reporter Lauren Monsen spotlights Prof. Dina Katabi for her work in advancing medicine with artificial intelligence. “Katabi develops AI tools to monitor patients’ breathing patterns, hear rate, sleep quality, and movements,” writes Monsen. “This data informs treatment for patients with diseases such as Parkinson’s, Alzheimer’s, Crohn’s, and ALS (amyotrophic lateral sclerosis), as well as Rett syndrome, a rare neurological disorder.”

Forbes

Writing for Forbes, Senior Lecturer Guadalupe Hayes-Mota '08, SM '16, MBA '16 explains how transformative strategies in global healthcare are “reshaping the pharmaceutical market dynamics.” This new method “transcends traditional financial tactics representing a fundamental shift in global health practices towards sustainable and universal access to essential medicines,” writes Hayes-Mota.

New York Times

Prof. Amy Finkelstein speaks with New York Times reporter Sarah Kliff about “the impact of medical debt relief on individuals.” “The idea that maybe we could get rid of medical debt, and it wouldn’t cost that much money but it would make a big difference, was appealing,” says Finkelstein. “What we learned, unfortunately, is that it doesn’t look like it has much of an impact.”