Skip to content ↓

Topic

Medicine

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 568 news clips related to this topic.
Show:

STAT

Prof. Bob Langer and Prof. Giovanni Traverso have co-founded Syntis Bio, a biotech company that will use technology to “coat the stomach and potentially other organ surfaces, [change] the way that drugs are absorbed or, in the case of obesity, which hormones are triggered,” reports Allison DeAngelis for STAT

Newsweek

MIT have developed a new ingestible vibrating capsule that could potentially be used to aid weight loss, writes Newsweek’s Robyn White. Prof. Giovanni Traverso said the capsule “could facilitate a paradigm shift in potential therapeutic options for obesity and other diseases affected by late stomach fullness.”

Interesting Engineering

MIT engineers have developed a new adhesive, low-cost hydrogel that can stop fibrosis often experienced by people with pacemakers and other medical devices, reports for Maria Bolevich Interesting Engineering. “These findings may offer a promising strategy for long-term anti-fibrotic implant–tissue interfaces,” explains Prof. Xuanhe Zhao. 

Forbes

Forbes selects innovators for the list’s Healthcare & Science category, written by senior contributor Yue Wang. On the list is MIT PhD candidate Yuzhe Yang, who studies AI and machine learning technologies capability to monitor and diagnose illnesses such as Parkinson's disease.

HealthDay News

MIT researchers have developed microneedle patches that are capable of restoring hair growth in alopecia areata patients, reports Ernie Mundell for HealthDay. The team’s approach includes a, “patch containing myriad microneedles that is applied to the scalp,” writes Mundell. “It releases drugs to reset the immune system so it stops attacking follicles.” 

New Scientist

Prof. Giovanni Traverso and colleagues have developed a new ingestible sensor that could be used to help diagnose gastrointestinal conditions, reports Jeremy Hsu for New Scientist. “Eventually, the futuristic device could provide treatments for gut illnesses through electrical stimulation via additional electrodes embedded in the sensor,” Hsu notes.  

Time Magazine

Prof. Linda Griffith and Stuart Orkin '67 were named to this year’s Time 100 Health list, which recognizes innovators leading the way to new health solutions. Griffith, who was honored for her work engineering a uterine organoid to study endometriosis, explains that in the future engineered organoids could be used to find the most effective treatments for patients. “We have all the genetic information and all the information from the patient’s exposure to infections, environmental chemicals, and stress that would cause the tissues to become deranged in some way, all captured in that organoid,” Griffith explains. 

ShareAmerica

ShareAmerica reporter Lauren Monsen spotlights Prof. Dina Katabi for her work in advancing medicine with artificial intelligence. “Katabi develops AI tools to monitor patients’ breathing patterns, hear rate, sleep quality, and movements,” writes Monsen. “This data informs treatment for patients with diseases such as Parkinson’s, Alzheimer’s, Crohn’s, and ALS (amyotrophic lateral sclerosis), as well as Rett syndrome, a rare neurological disorder.”

Forbes

Writing for Forbes, Senior Lecturer Guadalupe Hayes-Mota '08, SM '16, MBA '16 explains how transformative strategies in global healthcare are “reshaping the pharmaceutical market dynamics.” This new method “transcends traditional financial tactics representing a fundamental shift in global health practices towards sustainable and universal access to essential medicines,” writes Hayes-Mota.

New York Times

Prof. Amy Finkelstein speaks with New York Times reporter Sarah Kliff about “the impact of medical debt relief on individuals.” “The idea that maybe we could get rid of medical debt, and it wouldn’t cost that much money but it would make a big difference, was appealing,” says Finkelstein. “What we learned, unfortunately, is that it doesn’t look like it has much of an impact.”

Food Navigator

Prof. Joseph Doyle and his colleagues are studying whether type 2 diabetes could be treated or improved by nutrition, reports Donna Eastlake for Food Navigator.

NECN

MIT researchers have discovered a protein found in human sweat that holds antimicrobial properties and can “inhibit the growth of the bacteria that causes Lyme disease,” reports Matt Fortin for NENC. The team believes this “type of protein could be put into a topical cream to make something called ‘Lyme Block’ – like sunblock, but for preventing Lyme.”  "Ideally what we would love to do is give people more control over their own risk," says Principal Research Scientist Michal Tal. "And really try to develop this into a possible preventative that you could put on repellant or sunblock to protect against other elements of the outdoors that you could also protect yourself against Lyme."

Salon

Researchers from MIT and elsewhere have isolated a “protein in human sweat that protects against Lyme disease,” reports Matthew Rozsa for Salon. The researchers believe that if “properly harnessed the protein could form the basis of skin creams that either prevent the disease or treat especially persistent infections,” writes Rosza.

New Scientist

MIT scientists have found that a potential treatment for Alzheimer’s disease involving flickering lights and low-pitched sound could also help prevent cognitive problems after cancer treatment, reports Clare Wilson for New Scientist. The treatment is aimed at stimulating 40 Hz brainwaves, which are linked to memory processing. The results suggest targeting such “brainwaves may result in broader benefits for the brain, including increasing the activity of immune cells and, most recently, boosting its drainage system, which could help clear a toxic protein called beta-amyloid.”
 

Fast Company

Writing for Fast Company, Senior Lecturer Guadalupe Hayes-Mota '08, SM '16, MBA '16 shares methods to address the influence of AI in healthcare. “Despite these advances [of AI in healthcare], the full spectrum of AI’s potential remains largely untapped,” explains Hayes-Mota. “Systemic hurdles such as data privacy concerns, the absence of standardized data protocols, regulatory complexities, and ethical dilemmas are compounded by an inherent resistance to change within the healthcare profession. These barriers underscore the urgent need for transformative action from all stakeholders to fully harness AI’s capabilities.”