Skip to content ↓

Topic

Mechanical engineering

Download RSS feed: News Articles / In the Media / Audio

Displaying 721 - 735 of 806 news clips related to this topic.
Show:

BetaBoston

Researchers from MIT and Harvard have identified the optical features within a limpet’s shell that allow the mollusk to display blue stripes, reports Nidhi Subbaraman for BetaBoston. The findings could inspire developments in augmented reality screens.

Boston Magazine

MIT researchers have developed a test for Ebola and other fevers using gold nanoparticle sensors that quickly identify the pathegon, writes Andrea Timpano for Boston Magazine. “It is important to recognize that the United States needs to have strategies for surveillance that will identify dangerous viruses,” says Professor Lee Gehrke.

Forbes

“A promising new diagnostic test from MIT looks like it could be a game changer for rapidly diagnosing several important infectious diseases within minutes,” writes Judy Stone for Forbes. The paper test developed by MIT researchers can diagnose Ebola, yellow fever and dengue fever.  

BetaBoston

MIT researchers have developed a garden filled with origami robots, LED flowers that can bloom on command and mechanical insects, reports Nidhi Subbaraman for BetaBoston. The garden was developed in an effort to make programming more accessible to children. 

Scientific American

MIT researchers have developed a new silver nanoparticle-based paper test that can quickly detect dengue, yellow fever and Ebola, reports Vicki Davison for Scientific American. In addition to the paper test, the researchers are also working on developing a mobile application to ease diagnosis. 

Naked Scientists

The Naked Scientists feature Prof. Nicholas Makris explaining his research on the evolution of violin design and performing on the lute. Makris explains his finding that the violin’s “F-hole length increased from the Amati time period to the Guarneri time period," making the instrument's sound more powerful. 

New York Times

A new study conducted by MIT researchers examines the unique acoustical properties of Cremona-era violins’ F-shaped holes, writes Douglas Quenqua for The New York Times. “The scientists found that the length of the holes, not the width, and the strength of the back plate had the biggest effects on sound quality,” Quenqua explains. 

USA Today

Matt Cantor of USA Today writes that by examining the key features that augment a violin’s sound, MIT researchers have found that the shape and design of the “f-holes” give the instrument its acousitcal power. The researchers also found that the instrument’s shape evolved gradually over time, by chance. 

Economist

The Economist writes about a new MIT study examining the development of violin design, which was found to have evolved by chance. The researchers also found that the shape and length of the violin’s “f-holes” give the instrument its acoustical power. 

The Christian Science Monitor

A new study conducted by researchers from MIT found that a violin’s acoustic power comes from the design of the instrument, writes Joseph Dussault of The Christian Science Monitor. The researchers also found that the “violin’s distinctive, f-shaped sound hole came not as a result of human ingenuity, but rather a series of random mutations.”

NBC News

Devin Coldewey of NBC News writes about new MIT research into the evolution of violin design. The researchers found that “the characteristics of the instruments underwent changes surprisingly like evolution by natural selection,” Coldewey explains. 

Popular Science

Francie Diep writes for Popular Science about how a new mathematical theory developed by MIT researchers may help to explain how surfaces wrinkle. “The equation could help chemists working on high-tech materials,” explains Diep.

Boston Globe

Students in course 2.009 not only learn about the process of creating new products, but also how to pitch their invention, writes Boston Globe reporter Stefanie Friedhoff. According to Prof. David Wallace, the course covers “how you make a product in the real world, with engineers and designers and business people all working together.”

New York Times

In this New York Times video, James Gorman explores new MIT research examining how rainfall produces a scent. The researchers found that when raindrops hit porous surfaces they release aerosols. The scent is “not from the rain itself,” explains Prof. Cullen Buie, “it’s from the earth.”

USA Today

Jared Silverman of USA Today reports on how MIT researchers have found that raindrops release aerosols when they hit the ground, causing a distinctive odor. The researchers found that “light to moderate rain produces more aerosols compared to heavy rain,” Silverman explains.