Skip to content ↓

Topic

Mechanical engineering

Download RSS feed: News Articles / In the Media / Audio

Displaying 316 - 330 of 720 news clips related to this topic.
Show:

New Scientist

MIT researchers have developed a new drug-releasing coil that could be used to help treat tuberculosis, reports Ruby Prosser Scully for New Scientist. Scully explains that the coil is “too large to leave the stomach, so it stays there, and the medicines threaded onto it leach out at a rate depending on the type of drug and the polymer the developers use to make the pills.”

Gizmodo

Gizmodo reporter Ed Cara writes about a study by MIT researchers have finds “inactive” ingredients in pills could trigger a patient’s allergies or intolerances. “We’re not saying that everyone should stop taking these medications,” explains Prof. Giovanni Traverso. “But people with an allergy or intolerance should definitely have the opportunity to find out if they have to worry about certain medications.”

NPR

MIT researchers have found that many pills contain “inactive” ingredients that could be troublesome for patients, reports Richard Harris for NPR. Prof. Giovanni Traverso explains that if a patient with lactose intolerance takes a pill containing lactose, “it's probably not going to manifest in any significant symptoms. But as the number of pills you're taking [increases], then certainly you might cross that threshold."

Associated Press

AP reporter Lauran Neergaard writes that a new study by MIT researchers finds that pills often contain “inactive” ingredients capable of causing allergic or gastrointestinal reactions. The researchers found that “it’s hard for those patients, or even their doctors, to tell if a pill contains an extra ingredient they should avoid,” Neergaard explains.

HuffPost

In this video, HuffPost highlights a robotic cheetah created by MIT researchers that can perform a backflip from a standing position. HuffPost notes that the robot has a “range of motions, making it agile enough to pick itself up if knocked to the ground.”

Forbes

Forbes reporter Eric Mack writes about the latest iteration of MIT’s robotic cheetah: A new miniature version that weighs 20 pounds. “The cheetah has heavyweight skills like walking over uneven terrain, picking itself up after a fall or a swift kick and of course, its ability to pull off a 360-degree reverse flip from a standing position,” Mack explains.

The Washington Post

Washington Post reporter Peter Holley writes that MIT researchers have created a mini robotic cheetah that can perform a backflip and walk right-side up or upside down. “Legged robots will have a variety of uses where human or animal-like mobility is necessary, but it may be unsafe to send a person,” explains technical associate Benjamin Katz.

Fortune- CNN

Fortune reporter Alyssa Newcomb writes that MIT researchers have developed a 20-pound robotic cheetah that can successfully execute a backflip and nail the landing. “The robotic mini cheetah can also gallop over uneven terrain twice as fast as the average human,” writes Newcomb.

NBC Mach

A miniature version of the robotic cheetah developed by MIT researchers provides a testbed for researchers to experiment with new maneuvers like backflips, reports David Freeman for NBC Mach. “Having a platform that's relatively small and safe and cheap makes running experiments very easy,” says technical associate Benjamin Katz, “you don't have to worry about breaking the robot or getting hurt.”

TechCrunch

MIT researchers have developed a miniature robotic cheetah that can perform a wide range of maneuvers, reports Brian Heater for TechCrunch. “The robot is capable of running up to five miles per hour, can perform a 360-degree backflip from a standing position and will right itself quickly after being kicked to the ground,” Heater explains.

The Verge

Verge reporter Chaim Gartenberg writes that MIT researchers have developed a new mini cheetah robot that can perform backflips. Gartenberg notes that the robot is the first four-legged robot that can do a backflip, adding that it weighs “around 20 pounds, and can trot along at up to 2.45 meters per second (around 5.5 miles per hour).”

Radio Boston (WBUR)

WBUR’s Deborah Becker speaks with Prof. Regina Barzilay about her work applying AI to health care and Prof. Sangbae Kim about how the natural world has inspired his robotics research during a special Radio Boston segment highlighting innovation in the greater Boston area.

Financial Times

Financial Times reporter Clive Cookson writes that researchers from MIT and Penn State have developed a technique to make clear droplets produce iridescent colors. Cookson explains that the phenomenon is a previously unknown example of ‘structural color,’ produced not by pigments but the internal reflections of light within the tiny droplets.”

ABC News

ABC News spotlights how MIT researchers have found that a lobster’s membrane could serve as inspiration for developing new forms of body armor. “The membrane on a lobster’s underbelly is as strong as the rubber on car tires. It could be used as a guide for body armor that allows more mobility without sacrificing protection.”

Newsweek

Newsweek reporter Hannah Osborne writes that MIT researchers have found that a lobster’s membrane, which protects its underbelly, is made of one of the toughest hydrogels in the world. “Its strength and flexibility,” Osborne explains, could “make it an ideal material to use as a blueprint for body armor.”