Skip to content ↓

Topic

Mechanical engineering

Download RSS feed: News Articles / In the Media / Audio

Displaying 286 - 300 of 830 news clips related to this topic.
Show:

Gizmodo

MIT researchers have developed an “Oreometer” to test the optimal way to split an Oreo cookie, an exercise in rheology, or the study of how matter flows, reports Isaac Shultz for Gizmodo. "Our favorite twist was rotating while pulling Oreos apart from one side, as a kind of peel-and-twist, which was the most reliable for getting a very clean break,” explains graduate student Crystal Owens.

CNN

CNN reporter Madeline Holcombe spotlights a new study by MIT researchers exploring why the cream on Oreo cookies always sticks to one side when twisted open. Graduate student Crystal Owens explains that she hopes the research will inspire people "to investigate other puzzles in the kitchen in scientific ways. The best scientific research, even at MIT, is driven by curiosity to understand the world around us, when someone sees something weird or unknown and takes the time to think 'I wonder why that happens like that?'"

Popular Science

Graduate student Crystal Owens speaks with Popular Science reporter Philip Kiefer about her work exploring why the cream filling of an Oreo cookie always sticks to one side. “It turns out there’s not really a trick to it,” Owens says. “Everything you try to do will get mostly a clean break.”

VICE

Graduate student Crystal Owens and her colleagues tested the possibility of separating the two wafers of an Oreo in a way that evenly splits the cream filling using a rheometer, an instrument that measures torque and viscosity of various substances, reports Becky Ferreira for Vice. “After twisting Oreos apart with the instruments, the team visually inspected the ratio of creme on each wafer and logged the findings. A number of variations on the experiment were also introduced, such as dipping the cookies in milk, changing the rotation rate of the rheometer, and testing different Oreo flavors and filling quantities,” writes Ferreira.

Science

A team of researchers from MIT and the National Renewable Energy Laboratory successfully reached a 30% jump in thermophotovoltaic (TPV) efficiency, reports Robert F. Service for Science. “[TPV] is a semiconductor structure that concerts photons emitted from a heat source to electricity, just as a solar cell transforms sunlight into power,” explains Service.

Science

Using cellulose nanocrystals found in trees, MIT researchers have developed a new material that is both tough and strong, reports Kathryn Hulick for Science News for Students. Abhinav Rao PhD ’18 explains that he was inspired to create the material “by looking at what nature has to teach us.”

Mashable

Mashable reporter Emmett Smith spotlights how MIT researchers have developed a new technique to clear dust from solar panels without using water. The new method uses “electrostatic repulsion, where an electrode that glides above the panel electrically charges dust particles and subsequently repels them.”

Wired

MIT researchers have utilized a new reinforcement learning technique to successfully train their mini cheetah robot into hitting its fastest speed ever, reports Matt Simon for Wired. “Rather than a human prescribing exactly how the robot should walk, the robot learns from a simulator and experience to essentially achieve the ability to run both forward and backward, and turn – very, very quickly,” says PhD student Gabriel Margolis.

The Boston Globe

With the announcement of the new MIT Morningside Academy for Design, MIT is looking to create “a hub of resources for the next generation of designers, integrating areas of study such as engineering and architecture in the process,” reports Dana Gerber for The Boston Globe. “This is really going to give us a platform to connect with the world around problems that communities are facing,” explained Prof. John Ochsendorf, who will serve as the academy’s founding director.

Popular Science

MIT engineers have developed a new contactless method to clean solar panels that could save billions of gallons of water, reports Anuradha Varanasi for Popular Science. “I was amazed at the sheer amount of pure water that is required for cleaning solar panels,” says Prof. Kripa Varanasi. “The water footprint of the solar industry is only going to grow in the future. We need to figure out how to make solar farms more sustainable.”

Popular Science

MIT researchers have created a new computer algorithm that has allowed the mini cheetah to maximize its speed across varying types of terrain, reports Shi En Kim for Popular Science. “What we are interested in is, given the robotic hardware, how fast can [a robot] go?” says Prof. Pulkit Agrawal. “We didn’t want to constrain the robot in arbitrary ways.”

Tech Briefs

Prof. Kripa Varanasi, graduate student Sreedath Panath, and a team of researchers are developing a water-free way to clear dust off of solar panels, reports Billy Hurley and Ed Brown for Tech Briefs. “Water is such a precious commodity, and people need to be careful about how to make use of this resource that we have,” says Varanasi. “The solar industry really needs to keep this in mind; we don’t want to be solving one problem and creating another.”

Mashable

MIT researchers have used a new reinforcement learning system to teach robots how to acclimate to complex landscapes at high speeds, reports Emmett Smith for Mashable. “After hours of simulation training, MIT’s mini-cheetah robot broke a record with its fastest run yet,” writes Smith.

The Verge

CSAIL researchers developed a new machine learning system to teach the MIT mini cheetah to run, reports James Vincent for The Verge. “Using reinforcement learning, they were able to achieve a new top-speed for the robot of 3.9m/s, or roughly 8.7mph,” writes Vincent.

Forbes

MIT has announced the creation of a new multidisciplinary center, called Morningside Academy for Design, which is intended to serve as a “focal point for design research, education, and entrepreneurship,” reports Michael T. Nietzel for Forbes