Skip to content ↓

Topic

Materials science and engineering

Download RSS feed: News Articles / In the Media / Audio

Displaying 46 - 60 of 337 news clips related to this topic.
Show:

The Wall Street Journal

Wall Street Journal reporter Aylin Woodward writes about how graduate student Crystal Owens and undergraduate Max Fan set out to solve a cookie conundrum: whether there was a way to twist apart an Oreo and have the filling stick to both wafers. Woodward writes that for Owens, the research “was a fun, easy way to make her regular physics and engineering work more accessible to the general public.”

Wired

Researchers at MIT have discovered what makes ancient Roman concrete “exponentially more durable than modern concrete,” reports Jim Morrison for Wired. “Creating a modern equivalent that lasts longer than existing materials could reduce climate emissions and become a key component of resilient infrastructure,” writes Morrison.

The Economist

MIT researchers devised a new way to arrange LED pixels to create screens with a much higher resolution than is currently possible, reports The Economist. The new technique, which involves stacking micro LEDS, could also be used to make “VR images that appear far more lifelike than today’s.”

Scientific American

MIT researchers have discovered that ancient Romans used calcium-rich mineral deposits to build durable infrastructure, reports Daniel Cusick for Scientific American. This “discovery could have implications for reducing carbon emissions and creating modern climate-resilient infrastructure,” writes Cusick.

Bloomberg

Bloomberg reporter Akshat Rathi spotlights Sublime Systems, an MIT startup developing new technology to produce low-carbon cement. “Sublime’s solution involves splitting the cement-making process into two steps,” explains Rathi. “The first step is to make calcium—the key element in limestone—in a form that’s ready to chemically react with silicon—the key element in sand. Sublime reduces energy use and carbon emissions in this step by avoiding limestone and using electricity, rather than coal-fired heat.”

NPR

Prof. Admir Masic speaks with NPR host Scott Simon about the concrete blend used by the ancient Romans to build long standing infrastructures. “We found that there are key ingredients in ancient Roman concrete that lead to a really outstanding functionality property in the ancient mortar, which is self-healing,” explains Masic.

Reuters

Reuters reporter Will Dunham writes that a new study by MIT researchers uncovers the secret ingredient that made ancient Roman concrete so durable and could “pave the way for the modern use of a replicated version of this ancient marvel.” Prof. Admir Masic explains that the findings are “an important next step in improving the sustainability of modern concretes through a Roman-inspired strategy.”

CNN

MIT researchers have discovered that ancient Romans used lime clasts when manufacturing concrete, giving the material self-healing properties, reports Katie Hunt for CNN. "Concrete allowed the Romans to have an architectural revolution," explains Prof. Admir Masic. "Romans were able to create and turn the cities into something that is extraordinary and beautiful to live in. And that revolution basically changed completely the way humans live."

Science

Scientists from MIT and other institutions have uncovered an ingredient called quicklime used in ancient Roman techniques for manufacturing concrete that may have given the material self-healing properties, reports Jacklin Kwan for Science Magazine. When the researchers made their own Roman concrete and tested to see how it handled cracks, “the lime lumps dissolved and recrystallized, effectively filling in the cracks and keeping the concrete strong,” Kwan explains.

Fast Company

Fast Company reporter Adele Peters writes that researchers from MIT and other institutions have found that a technique employed by ancient Romans for manufacturing concrete contains self-healing properties and could be used to help reduce concrete’s global carbon footprint. The ancient concrete method could open the “opportunity to build infrastructure that is self-healing infrastructure,” explains Prof. Admir Masic.

The Guardian

Researchers at MIT and elsewhere have found that using ancient Roman techniques for creating concrete could be used to create buildings with longer lifespans, reports Nicola Davis for The Guardian. “Roman-inspired approaches, based for example on hot mixing, might be a cost-effective way to make our infrastructure last longer through the self-healing mechanisms we illustrate in this study,” says Prof. Admir Masic.

The Hill

Researchers at MIT have found that applying ancient Roman techniques for developing concrete could be used to reduce concrete manufacturing emissions, reports Saul Elbein for The Hill. “Researchers said blocks treated with the method — in which concrete was mixed with reactive quicklime under continuous heat — knit themselves back together within a few weeks after being fractured,” writes Elbein.

Fast Company

MIT researchers have developed paper-thin solar cells that can adhere to nearly any material, reports Elissaveta M. Brandon for Fast Company. “We have a unique opportunity to rethink what solar technology looks like, how it feels, and how we deploy it,” says Prof. Vladimir Bulović.

Scientific American

Writing for Scientific American, John Fialka spotlights Form Energy, an MIT spinout designing an iron-air battery that “could help decarbonize the nation’s power sector more cheaply than lithium-ion storage systems.” Fialka explains that “unlike current lithium-ion batteries that require expensive materials mostly from other countries such as lithium, cobalt, nickel and graphite, the proposed battery stores electricity using widely available iron metal.” 

Fortune

Prof. Kripa Varanasi and Vishnu Jayaprakash PhD ’21, MS ’19 have launched AgZen, a company that is trying to reduce pesticide use through the development of additives that allow more pesticide droplets to stick to plants, reports Ian Mount for Fortune. “Globally, farms are spending about $60 billion a year on these pesticides, and our goal is to try to get them to cut that down while still not compromising on pest control,” says Jayaprakash.