Scientific American
Prof. Tanja Bosak speaks with Scientific American reporter Jonathan O’Callaghan about the possibility that the soil samples collected by NASA’s Perseverance Rover on Mars could contain evidence of ancient Martian life.
Prof. Tanja Bosak speaks with Scientific American reporter Jonathan O’Callaghan about the possibility that the soil samples collected by NASA’s Perseverance Rover on Mars could contain evidence of ancient Martian life.
Scientists from around the world, including researchers at MIT, have found evidence of past chemical reactions between liquid water and carbon-compounds on Mars, reports Laura Baisas for Popular Science. “We believe we have found these kinds of liquid water environments and organic compounds together. That’s sort of the limit to how we can describe what we call habitability,” explains postdoc Eva Linghan Scheller.
A team of scientists, including researchers from MIT, have found that Martian rocks uncovered by NASA’s Perseverance contain “signs of a watery past and are loaded with the kind of organic molecules that are the foundations for life as we know it,” reports Joel Achenbach for The Washington Post. “On balance, we are actually super lucky that there are igneous rocks in the crater, and that we happened to land right on them, since they are ideal for determining ages and studying the past history of Mars’ magnetic field,” says Prof. Benjamin Weiss.
NASA’s Perseverance rover has uncovered evidence of habitable conditions that once existed on Mars, reports Becky Ferreira for Vice. “In that kind of environment, we’re seeing very, very strange chemistry which is not common on Earth at all, but seems to be more common on Mars because we’ve seen these kinds of materials in almost all the missions now,” says postdoctoral fellow Eva Scheller.
Prof. Tanja Bosak speaks with Science reporter Eric Hand about how scientists plan to study rock samples from Mars for clues as to whether the planet once had a magnetic field and for signs of ancient life, such as the tough lipid molecules that can form cell walls. “You hope for an outline of a cell,” she says. “You will never find peptides and proteins, but lipids can persist.”
Washington Post reporter Pranshu Verma highlights how MIT researchers have demonstrated that the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) can convert carbon dioxide into breathable oxygen on Mars. “It’s what explorers have done since time immemorial,” explains Prof. Jeffrey Hoffman. “Find out what resources are available where you’re going to and find out how to use them.”
MIT researchers have used the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) to successfully generate oxygen on Mars, reports Martin Finucane for The Boston Globe. “This is the first demonstration of actually using resources on the surface of another planetary body and transforming them chemically into something that would be useful for a human mission,” says Prof. Jeffrey Hoffman. “It’s historic in that sense.”
MIT researchers’ Mars Oxygen in-Situ Resource Utilization Experiment (MOXIE) has been successfully generating breathable oxygen on Mars, reports The Guardian. “It is hoped that at full capacity the system could generate enough oxygen to sustain humans once they arrive on Mars, and fuel a rocket to return humans to Earth,” writes The Guardian.
The MIT MOXIE experiment, which traveled to Mars aboard NASA’s Perseverance rover, has been able to create oxygen from the Martian atmosphere, reports Sarah Wells for Vice. “This experiment is also the first to successfully harvest and use resources on any planetary body, a process that will be important not only for Martian exploration but future lunar habitats as well,” writes Wells.
CNN reporters Katie Hunt and Ashley Strickland spotlight how the MIT-led Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) has been successfully generating oxygen on Mars during seven experimental test runs in a variety of atmospheric conditions. “A scaled up MOXIE would include larger units that could run continuously and potentially be sent to Mars ahead of a human mission to produce oxygen at the rate of several hundred trees,” they write. “This would allow the generation -- and storage -- of enough oxygen to both sustain humans once they arrive and fuel a rocket for returning astronauts back to Earth.”
Bloomberg News reporter Martine Paris writes that the MIT MOXIE experiment has been converting carbon dioxide from the Martian environment into oxygen since the Perseverance rover landed on Mars. “Seven times last year, throughout the Martian seasons, Moxie was able to produce about six grams (0.2 ounces) of oxygen per hour,” writes Paris.
During day and night, in the wake of a dust storm and in extreme temperatures, the MIT-led Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) was able to generate about 100 minutes of breathable oxygen in 2021 on Mars, reports Jacklin Kawn for New Scientist. “At the highest level, this is just a brilliant success,” said Michael Hecht, principal investigator of the MOXIE mission at MIT’s Haystack Observatory.
One year after NASA’s Perseverance rover successfully landed on Mars, scientists are preparing to investigate a dried-up river delta along the west rim of the Jezero crater to search for rocks and microscopic fossils, reports Kenneth Chang for The New York Times. If Perseverance undercovers fossils, “we have to start asking whether some globs of organic matter are arranged in a shape that outlines a cell,” says Prof. Tanja Bosak.
Prof. Taylor Perron, a recipient of one of this year’s MacArthur fellowships, speaks with Callie Crossley of GBH’s Under the Radar about his work studying the mechanisms that shape landscapes on Earth and other planets. “We try to figure out how we can look at landscapes and read them, and try to figure out what happened in the past and also anticipate what might happen in the future,” says Perron of his work as a geomorphologist.
Forbes contributor David Bressan writes that a new study co-authored by MIT researchers finds that images taken by the Perseverance rover show that Mars’ Jezero crater was once a lake. “The fine-grained clay and carbonate layers deposited in the fossil lake are capped by a diamict, a sedimentary rock consisting of a mix of large and small boulders,” writes Bressan. “Scientists think the boulders were picked up tens of miles upstream and deposited into the former lakebed by episodic flash floods, suggesting a catastrophic climate change in Mars' distant past.”