Skip to content ↓



Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 92 news clips related to this topic.

The Academic Times

A new study by MIT researches finds that some masses of boson particles don’t actually exist, reports Monisha Ravisetti for The Academic Times. “[Bosons] could be dark matter particles, or they could be something that people call axions, which are proposed particles that could solve problems with the magnetic bipoles of particles,” says Prof. Salvatore Vitale. “Because they can be any of these things, that means they could also have an incredibly broad range of masses.”

Physics World

Physics World selected a study by researchers from MIT’s LIGO Lab that shows quantum fluctuations can jiggle objects as large as the mirrors of the LIGO observatory as one of the top 10 breakthroughs of the year. “The research could lead to the improved detection of gravitational waves by LIGO, Virgo and future observatories,” notes Hamish Johnston for Physics World.

CBS Boston

Boston 25 spotlights how scientists from LIGO and Virgo have detected what may be the most massive black hole collision yet. “The result of the black holes colliding created the first-ever observed intermediate black hole, at 142 times the mass of the sun,” reports Boston 25.

The Verge

Scientists from LIGO and Virgo have detected the largest collision between two black holes to date, which appears to have created an “intermediate-mass” black hole, reports Loren Grush for The Verge. Intermediate-mass black holes, “are really the missing link between [black holes with] tens of solar masses and millions,” says Prof. Salvatore Vitale. “It was always a bit baffling that people couldn’t find anything in between.”


TechCrunch reporter Taylor Hatmaker writes that MIT researchers will led a new NSF-funded research institute focused on AI and physics.


Prof. Nergis Mavalvala has been named the new Dean of MIT’s School of Science, reports Zara Khan for Mashable. Khan notes that Mavalvala “is known for her pioneering work in gravitational wave detection,” and will be the first woman to serve as Dean of the School of Science.

The Atlantic

Marina Koren writes for The Atlantic about the continued importance of the discoveries that stem from the LIGO and Virgo laser experiments. “There is something called the gravitational-wave memory effect…that comes out of Einstein’s theory of relativity, but it would be nice to see that directly,” says Salvatore Vitale, a physics professor at MIT and a LIGO scientist.


Sky and Telescope editor Monica Young speaks with WBUR about how scientists from the LIGO and Virgo gravitational wave observatories, including MIT researchers, may have detected a black hole colliding with a neutron star. Young explains that upgrades made to both observatories should enable investigation of not only individual cosmic events, but also the study of neutron stars and black holes as populations.


Adrian Cho of Science magazine writes that the possible black hole-neutron star merger spotted by LIGO and Virgo would be a “gem for scientists,” but work remains to confirm the signal. Prof. Salvatore Vitale, a LIGO member from MIT, tells Cho: “If you ask me, ‘Would you bet a coffee, your car, or your house on this?’ I would say, ‘I’d bet your car.’”


Gizmodo reporter Ryan Mandelbaum explores the five potential gravitational wave detections made by the LIGO and Virgo observatories in the last month. Prof. Salvatore Vitale explained that the possible detection of a black hole colliding with a neutron star could provide scientists with a better way to measure how quickly the universe is expanding.

Ars Technica

“LIGO/VIRGO has opened up its notification process to the public,” explains Ars Technica reporter John Zimmer. “In short, anyone who’s interested can find out what LIGO is seeing within a day of when the LIGO scientists themselves do.”

The LIGO and Virgo gravitational wave detectors have identified five new cosmic events since resuming operations last month, reports Sarah Lewin for “The most exciting thing of the beginning of O3 [this third observation round] is that it's clear we are going from one event every few months to a few events every month," explains Prof. Salvatore Vitale.


Prof. Nergis Mavalvala speaks with NPR’s Nell Greenfieldboyce about recent upgrades made to the LIGO gravitational wave detectors, which should increase their ability to sense previously undiscovered cosmic events. "That's how discovery happens," explains Mavalvala. "You turn on a new instrument, you point it out at the sky, and you see something that you had no idea existed."

Science Friday

Prof. Nergis Mavalvala speaks with Ira Flatow of Science Friday about how she and her colleagues are working on a new technology called squeezed light, which could enable LIGO to see even more of the cosmos. Mavalvala explains that squeezed light is “a somewhat exotic quantum state of light that we engineer in our labs to improve the sensitivity of LIGO.”

New York Times

New York Times reporter Dennis Overbye writes about the years of effort that go into ensuring that large-scale, Nobel-prize winning scientific endeavors like LIGO – which is jointly operated by MIT and Caltech – are funded and successful. Overbye writes that LIGO’s success “was a saga of persistence, ingenuity and just plain bravery in the face of nature and professional skepticism.”