Skip to content ↓



Download RSS feed: News Articles / In the Media

Displaying 1 - 15 of 86 news clips related to this topic.


Prof. Nergis Mavalvala, dean of the MIT School of Science, speaks with Nobel Peace Prize laureate Malala Yousafzai about what inspired her love of science, how to inspire more women to pursue their passions and her hopes for the next generation of STEM students. “Working and building with my hands has always been something I’ve enjoyed doing,” says Mavalvala. “But I’ve also always been interested in the fundamental questions of why the universe is the way it is. I couldn’t have been more delighted when I discovered there was such a thing as experimental physics.”

National Public Radio (NPR)

NPR’s Nell Greenfieldboyce spotlights how LIGO has helped to usher in a “big astronomy revolution” that is allowing scientists to listen to the universe. “The exciting thing is when you've got a new instrument, you know, a brand-new way of looking at things,” says Greenfieldboyce, “you don't know what you might detect that you never even thought of because until now, you just weren't able to look at the universe in this way.”

Popular Mechanics

Researchers from MIT and other institutions have been able to observationally confirm one of Stephen Hawking’s theorems about black holes, measuring gravitational waves before and after a black hole merger to provide evidence that a black hole’s event horizon can never shrink, reports Caroline Delbert for Popular Mechanics. “This cool analysis doesn't just show an example of Hawking's theorem that underpins one of the central laws affecting black holes,” writes Delbert, “it shows how analyzing gravitational wave patterns can bear out statistical findings.”


Prof. Nergis Mavalvala, Dean of the School of Science, speaks with Becky Ferreira of Motherboard’s “Space Show” about LIGO’s 2015 discovery of gravitational waves and what researchers in the field have learned since then. “Every one of these observations tells us a little bit more about how nature has assembled our universe,” says Mavalvala. “Really, in the end, the question we're asking is: ‘How did this universe that we observe come about?”

United Press International (UPI)

UPI reporter Brooks Hays writes that LIGO researchers have cooled a human-scale object to a near standstill. "One of the questions that we might be able to answer is: 'Why do large objects not naturally appear in quantum states?' There are various conjectures for why that might be; some say that gravity -- which acts strongly on larger objects -- might be responsible," explains Prof. Vivishek Sudhir. "We now have a system where some of these conjectures can be experimentally tested.”


LIGO researchers have nearly frozen the motion of atoms across four mirrors used to detect ripples in space-time, reports Isaac Schultz for Gizmodo. “We could actually use the same capability of LIGO to do this other thing, which is to use LIGO to measure the random jiggling motion of these mirrors—use that information which we have about the motion—and apply a counteracting force, so that you know you would stop the atoms from moving,” says Prof. Vivishek Sudhir.

New Scientist

New Scientist reporter Leah Crane writes that a set of mirrors at LIGO have been cooled to near absolute zero, the largest objects to be brought to this frigid temperature. “The goal of this work is to help explain why we don’t generally see macroscopic objects in quantum states, which some physicists have suggested may be due to the effects of gravity,” writes Crane.

New Scientist

New Scientist reporter Leah Crane writes that researchers from the LIGO and Virgo gravitational wave observatories have potentially detected primordial black holes that formed in the early days of the universe. “When I started this, I was expecting that we would not find any significant level of support for primordial black holes, and instead I got surprised,” says Prof. Salvatore Vitale.

The Boston Globe

Boston Globe reporter Charlie McKenna writes that MIT researchers have used the spin of black holes detected by the LIGO and Virgo detectors to search for dark matter. "In reality, there is a much broader set of theories that predict or relies on the existence of these very ultra-light particles,” says Prof. Salvatore Vitale. “One is dark matter. So they could be dark matter. But they could also solve other open problems in particle physics.”

The Academic Times

A new study by MIT researches finds that some masses of boson particles don’t actually exist, reports Monisha Ravisetti for The Academic Times. “[Bosons] could be dark matter particles, or they could be something that people call axions, which are proposed particles that could solve problems with the magnetic bipoles of particles,” says Prof. Salvatore Vitale. “Because they can be any of these things, that means they could also have an incredibly broad range of masses.”

Physics World

Physics World selected a study by researchers from MIT’s LIGO Lab that shows quantum fluctuations can jiggle objects as large as the mirrors of the LIGO observatory as one of the top 10 breakthroughs of the year. “The research could lead to the improved detection of gravitational waves by LIGO, Virgo and future observatories,” notes Hamish Johnston for Physics World.

CBS Boston

Boston 25 spotlights how scientists from LIGO and Virgo have detected what may be the most massive black hole collision yet. “The result of the black holes colliding created the first-ever observed intermediate black hole, at 142 times the mass of the sun,” reports Boston 25.

The Verge

Scientists from LIGO and Virgo have detected the largest collision between two black holes to date, which appears to have created an “intermediate-mass” black hole, reports Loren Grush for The Verge. Intermediate-mass black holes, “are really the missing link between [black holes with] tens of solar masses and millions,” says Prof. Salvatore Vitale. “It was always a bit baffling that people couldn’t find anything in between.”


TechCrunch reporter Taylor Hatmaker writes that MIT researchers will led a new NSF-funded research institute focused on AI and physics.


Prof. Nergis Mavalvala has been named the new Dean of MIT’s School of Science, reports Zara Khan for Mashable. Khan notes that Mavalvala “is known for her pioneering work in gravitational wave detection,” and will be the first woman to serve as Dean of the School of Science.