Skip to content ↓

Topic

Light

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 55 news clips related to this topic.
Show:

The Washington Post

Astronomers and researchers from MIT and 80 other institutions have captured the first image of a supermassive black hole at the center of our galaxy reports Joel Achenbach for The Washington Post.  “The pandemic slowed us down but it couldn’t stop us,” said research scientist Vincent Fish of the pandemic’s impact on the Event Horizon Telescope team’s work.

NBC News

Researchers from MIT and 80 other institutions have captured the first image of the Milky Way’s supermassive black hole, reports Denise Chow for NBC News. The image provides “the first direct visual evidence of ‘the gentle giant’ that lies at the center of our galaxy,” writes Chow.

CBS Boston

Researchers from MIT contributed to the first image of a supermassive black hole at the center of our galaxy, reports CBS Boston. “Black holes don’t emit light, but the image shows the shadow of the black hole surrounded by a bright ring of light, which is bent by the gravity of the black hole,” reports CBS.  

The Boston Globe

An international team of scientists, including MIT researchers, unveiled the first picture of the supermassive black hole at the heart of the Milky Way, reports Martin Finucane for The Boston Globe. “Our collaboration’s remarkable images of Sgr A* and our scientific conclusions were a combined effort that involved not just the handful of us on stages around the world today, but more than 300 people all working together united by our fascination with black holes,” explains research scientist Vincent Fish.

Associated Press

Associated Press reporter Seth Borenstein writes that the international consortium behind the Event Horizon Telescope has imaged the supermassive black hole at the center of the Milky Way. To get the picture, eight synchronized radio telescopes around the world had to coordinate so closely “in a process similar to everyone shaking hands with everyone else in the room,” explained research scientist Vincent Fish.

National Public Radio (NPR)

Researchers from the Event Horizon Telescope team, including MIT scientists, have captured the first image of the black hole at the center of the Milky Way, reports Bill Chappell for NPR. “More than 300 researchers collaborated on the effort to capture the image, compiling information from radio observatories around the world,” reports Chappell. “To obtain the image, scientists used observations from April 2017, when all eight observatories were pointed at the black hole.”

Inverse

Inverse reporter Charles Q. Choi writes that MIT astronomers have observed what appears to be the most tightly coupled black widow binary yet. "The one thing I know for sure is we really have never seen anything quite like this object,” says postdoctoral fellow Kevin Burdge, “and that there is probably a lot more to learn from it and other similar objects that I am finding right now, and that's what has me so excited about these."

VICE

MIT astronomers have detected what appears to be a black widow binary with the shortest orbital period ever recorded, reports Becky Ferreira for Vice. “It behaves exactly like a black widow in many, many ways,” says postdoctoral fellow Kevin Burdge, “but it also does a few new things that we've never seen before in any known black widow.” 

Popular Science

Popular Science reporter Rahul Rao writes that researchers from MIT and Harvard have whipped up quantum tornadoes, “the latest demonstration of quantum mechanics—the strange code of laws that governs the universe at its finest, subatomic scales.”

USA Today

USA Today reporter Karen Weintraub spotlights Prof. Li-Huei Tsai’s work studying a potential new approach to treating Alzheimer's disease and “whether certain tones of sound and frequencies of light can help regulate brain waves and help clear our cellular trash, including toxic proteins.” Tsai explains that: “The major difference between this approach and all other approaches is that this approach doesn’t just target one molecule or one pathway or one cell type. This is a holistic approach to take care of the whole system.”

Smithsonian Magazine

Researchers from MIT and Harvard have directly observed a quantum tornado, reports Elizabeth Gamillo for Smithsonian. “Scientists observed the tornado-like behavior after trapping and spinning a cloud of one million sodium atoms using lasers and electromagnets at 100 rotations per second,” writes Gamillo.

Physics World

A number of MIT researchers were named as top ten finalists for the Physics World 2021 Breakthrough of the Year. Prof. Wolfgang Ketterle and his colleagues were honored for their work in “independently observing Pauli blocking in ultracold gases of fermionic atoms” and astronomers with the Event Horizon Telescope Collaboration were honored for “creating the first image showing the polarization of light in the region surrounding a supermassive black hole.” 

GBH

Edgar Herwick of GBH News visits the lab of Prof. Mathias Kolle to explore the science behind what causes rainbows to arc across the sky. “The sun has to be behind you. Then water in the atmosphere in front of you. And that's usually when it rains, you get that condition,” says Kolle. “Then what you also want to do is you want to look at the right spot.”

Science News

Scientists from MIT have observed a quantum effect that blocks ultracold atoms from scattering light, reports Emily Conover for Science News. To observe the effect, the researchers “beamed light through a cloud of lithium atoms, measuring the amount of light it scattered,” writes Conover. “Then, the team decreased the temperature to make the atoms fill up the lowest energy states, suppressing the scattering of light.”

New Scientist

A new study by MIT scientists has uncovered evidence of Pauli blocking, confirming that as atoms are chilled and squeezed to extremes their ability to scatter light is suppressed, reports Leah Crane for New Scientist. “This is a very basic phenomenon, but it’s sort of a devil to see,” explains former MIT postdoc Yair Margalit. “You need these extreme conditions to be able to see it – high densities and ultra-low temperatures – and it is difficult to get both of these at once.”