Skip to content ↓

Topic

Koch Institute

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 261 news clips related to this topic.
Show:

CBC News

Principal Research Scientist Ana Jaklenec speaks with CBC host Bob McDonald about her work developing a mobile vaccine printer. The device “can be very important in certain scenarios when you’re trying to bring the ability to vaccinate in areas that might not have the right infrastructure to make vaccines or even to administer vaccines,” says Jaklenec, “so I think the portability is key here.” 

Matter of Fact with Soledad O'Brien

Soledad O’Brien spotlights how researchers from MIT and Massachusetts General Hospital developed a new artificial intelligence tool, called Sybil, that an accurately predict a patient’s risk of developing lung cancer. “Sybil predicted with 86 to 94 percent accuracy whether a patient would develop lung cancer within a year,” says O’Brien.

NBC News

NBC News highlights how researchers from MIT and MGH have developed a new AI tool, called Sybil, that can “accurately predict whether a person will develop lung cancer in the next year 86% to 94% of the time.” NBC News notes that according to experts, the tool "could be a leap forward in the early detection of lung cancer.”

Popular Science

Popular Science spotlights a sampling of the winning pictures from this year’s MIT Koch Institute Image Awards, an annual competition showcasing some of the images produced as part of life science and biomedical research at MIT. “Today, high-magnification images can help design new medical tools, enrich our understanding of diseases, and explain how embryos develop. And, as shown by the 2023 winners from the MIT Koch Institute Image Awards, they can be works of art, too.”

CBS Boston

Researchers at MIT and Massachusetts General Hospital have developed “Sybil” – an artificial intelligence tool that can predict the risk of a patient developing lung cancer within six years, reports Mallika Marshall for CBS Boston. 

Biomarker

Prof. Philip Sharp speaks with Biomarker blogger Dylan Neel about his journey through academia as a student, professor, Nobel laureate and biotech pioneer. “Science has become such an important part of our day-to-day lives: our immediate health, the food we eat, the cars we drive, the way we communicate,” says Sharp. “If you take a portion of the tools we use in our day-to-day lives and trace them all back: it's new technology, maybe not over 30 years old. It is very empowering. Life and progress are better than ever before.” 

The Washington Post

MIT researchers have developed a new AI tool called Sybil that could help predict whether a patient will get lung cancer up to six years in advance, reports Pranshu Verma for The Washington Post.  “Much of the technology involves analyzing large troves of medical scans, data sets or images, then feeding them into complex artificial intelligence software,” Verma explains. “From there, computers are trained to spot images of tumors or other abnormalities.”

Boston Magazine

MIT researchers are developing targeted drug delivery through the use of nanoparticles to aid in cancer treatment, reports Simone Migliori for Boston Magazine. “Designed to circulate through the bloodstream, these small but mighty travelers [nanoparticles] can deliver a chemotherapy drug directly to a target cancer cell without disturbing any healthy cells along the way,” writes Migliori. “In doing so, patients may be able to avoid some of the worst side effects of chemotherapy drugs while still effectively treating their cancer.”

Smithsonian Magazine

MIT researchers have created a robotic pill that can safely penetrate the mucus barrier in the digestive tract to deliver drugs more efficiently, reports Margaret Osborne for Smithsonian Magazine. “The device’s textured surface clears away the mucus, and the rotating motion erodes the compartment with the drug payload, which slowly releases into the digestive tract,” explains Osborne.

New York Times

Prof. Richard Hynes is one of the winners of this year’s Lasker Award, reports Benjamin Mueller for The New York Times, for his work describing how “cells bind to their surrounding networks of proteins and other molecules — findings that pointed the way toward treatments for a number of diseases.”

New Scientist

New Scientist reporter Alex Wilkins writes that MIT researchers have developed a robotic pill that can propel itself through mucus in the intestines and could enable some injection-only medications to be taken orally. “The pill is 2.5-centimeters long and 1-centimeter wide – about the size of a large multivitamin ­– and encased in a gelatin capsule that dissolves in stomach acid,” writes Wilkins. “The pH in the lower intestine activates the motor, which is powered by a small battery.”

Associated Press

Prof. Richard Hynes is one of three honorees for the Albert Lasker Basic Medical Research Award, reports Maddie Burakoff for the AP. Hynes and his fellow awardees “helped launch the field of integrin research, which has since led to new strategies for treating diseases,” writes Burakoff.

The Boston Globe

Prof. Richard Hynes is one of the three recipients of the 2022 Albert Lasker Basic Medical Research Award for his contributions to the field of integrin research, reports Martin Finucane for The Boston Globe. Hynes and his colleagues “provided a greater understanding of the diseases that can result when integrin function is perturbed.”

Economist

Prof. Edward Boyden has developed a new imaging technique called expansion-revealing microscopy that can reveal tiny protein structures in tissues, reports The Economist. “Already his team at MIT has used it to reveal detail in synapses, the nanometer-sized junctions between nerve cells, and also to shed light on the mechanisms at play in Alzheimer’s disease, revealing occasional spirals of amyloid-beta protein around axons, which are the threadlike parts of nerve cells that carry electrical impulses.”

News Medical Life Sciences

Doctoral research specialist Morteza Sarmadi speaks with Emily Henderson from News Medical Life Sciences about his work with Prof. Robert Langer and research scientist Ana Jaklenec in developing microparticles that are able to deliver self-boosting vaccines. “We believe this technique can significantly reduce the need to visit a healthcare provider to receive booster shots, a major challenge in remote areas without sophisticated healthcare resources,” says Sarmadi.