Skip to content ↓

Topic

Koch Institute

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 261 news clips related to this topic.
Show:

Scientific American

MIT researchers have developed new technology that allows vaccines to be directly inserted into the lymph nodes to target two of the most common mutations in the KRAS gene, which cause roughly one third of all cancers, reports Jaimie Seaton for Scientific American. “The team modified the small vaccine components to include a fatty acid, which enables the vaccine to effectively hitch a ride on albumin, a common protein found throughout the body,” explains Seaton. “Albumin serves as a molecular shuttle bus, with pockets on its surface where fatty acids can bind to it.”

Forbes

Forbes contributor William Haseltine spotlights how MIT researchers developed a biosensor ingestible capsule that can gather and transmit information on a patient’s condition to a physician. Haseltine notes that “aside from respiratory and heart rate monitoring, future applications for the pill could come from alterations in its design, leading to other avenues of health monitoring. These may include digestive health, blood sugar monitoring and cancer cell detection.” 

Wired

Researchers from MIT and elsewhere are developing an electronic pill that can “measure heart rate, breathing rate and core temperature – from inside a human stomach,” reports Celia Ford for Wired. “We have a solution that’s relatively simple and enables access broadly,” says Prof. Giovanni. “I think that can be really transformative.”

Interesting Engineering

MIT researchers have developed a new cell imaging technique that offers “the ability to observe up to seven different molecules simultaneously,” writes Amal Jos Chacko for Interesting Engineering. “This could open the door to a deeper understanding of cellular functions, aging, and diseases.”

HealthDay News

Researchers from MIT and elsewhere have developed a swallowable “technopill” that can monitor vital signs from inside the body, reports Dennis Thompson for HealthDay. “The ability to facilitate diagnosis and monitor many conditions without having to go into a hospital can provide patients with easier access to healthcare and support treatment,” says Prof. Giovanni Traverso.

New Scientist

New Scientist reporter Alice Klein writes that MIT researchers have developed an ingestible electronic device that “can measure your breathing and heart rate from inside your gut [and] could potentially diagnose sleep apnea and even detect opioid overdoses.” The device could one day allow “people to be assessed for sleep apnea wirelessly and cheaply while at home.”

Newsweek

Researchers at MIT and elsewhere have developed a swallowable electronic capsule that can be used to help diagnose sleep apnea and other sleep disorders, reports Ian Randall for Newsweek. “Conventional laboratory and home sleep studies require the patient to be attached to many different sensors,” says Prof. Giovanni Traverso. “As you can imagine, trying to sleep with all of this machinery can be challenging. [The] ingestible capsule just requires that the patient swallow the vitamin-sized pill. It's easy and unobtrusive and can accurately measure both respiratory rate and heart rate while the patient sleeps."

7 News

7 News spotlights how MIT researchers have developed a new implantable device that could provide diabetes patients with insulin without using injections. “What we’ve been able to show is that with a minimally invasive implant that is sitting just under the skin, we’ve actually been able to sort of achieve a diabetic reversal,” explains Research Scientist Siddharth Krishnan.

Gizmodo

Gizmodo reporter Ed Cara writes that MIT researchers have developed a new implantable device that can produce its own supply of insulin for up to a month. The team envisions that the device could “eventually be used for other medical conditions dependent on a regular supply of externally produced proteins, such as certain forms of anemia treated with erythropoietin,” writes Cara.

The Daily Beast

MIT researchers have developed a new implant that in the future could be used to deliver insulin to patients for up to a month, potentially enabling patients to control diabetes without injections, reports Tony Ho Tran for the Daily Beast. In the future, the researchers hope to “develop a device for humans that would be roughly the size of a stick of gum,” writes Tran. “The implant could also be used to deliver things like drugs or proteins to help treat other diseases in humans as well.”

Forbes

MIT researchers at MIT have developed a microfluidic chip-based model of liver tissue that “allows researchers to understand the biological mechanisms underlying liver tissue regeneration and points to several molecules that may promote the process,” reports William A. Haseltine for Forbes. "These results mark significant progress in our understanding of the human body’s regenerative properties," writes Haseltine. 

NPR

Researchers at MIT have developed a mobile vaccine printer capable of printing a vaccine onto a patch of microneedles that can be absorbed into the skin without injection, reports Sandra Tsing for NPR. “These printed vaccines could be used in areas that are unable to refrigerate traditional vaccines,” explains Tsing.

ABC News

Researchers from MIT and Massachusetts General Hospital have developed “Sybil,” an AI tool that can detect the risk of a patient developing lung cancer within six years, reports Mary Kekatos for ABC News. “Sybil was trained on low-dose chest computer tomography scans, which is recommended for those between ages 50 and 80 who either have a significant history of smoking or currently smoke,” explains Kekatos.

WCVB

Prof. Regina Barzilay speaks with Nicole Estephan of WCVB-TV’s Chronicle about her work developing new AI systems that could be used to help diagnose breast and lung cancer before the cancers are detectable to the human eye.

Plastics Today

Researchers from MIT and Duke have discovered that introducing weaker bonds into a material can produce stronger polymers, reports Norbert Sparrow for Plastics Today. “Side-chain cross-linked polymers are probably the most widely used type of polymer network,” says postdoc Shu Wang. “The concept [outlined] in our paper should work for all polymer networks that are side-chain cross linked.”