Skip to content ↓

Topic

Koch Institute

Download RSS feed: News Articles / In the Media / Audio

Displaying 76 - 90 of 264 news clips related to this topic.
Show:

CBS Boston

Prof. Giovanni Traverso speaks with CBS Boston about a new silicon mask with N95 filters that can be reused and sterilized. “We recognize that not everybody has the sophisticated sterilization equipment but we also recognize that many folks around the world would have access to some kind of an oven or perhaps a solution of chlorine,” says Traverso.

United Press International (UPI)

UPI reporter Sommer Brokaw writes that researchers from MIT and Brigham and Women’s Hospital have created a new reusable silicon face mask with N95 filters. “The new masks have space for one or two N95 filters to be replaced after each use, and the rest of the rubber mask itself can be sterilized and reused many times,” writes Brokaw.

WHDH 7

Researchers from MIT and Brigham and Women’s Hospital have designed a new reusable face mask outfitted with N95 filters that can be sterilized, reports WHDH.

Boston Globe

Researchers from MIT and Brigham and Women’s Hospital have developed a new silicon mask with N95 filters that can be sterilized and reused, reports Martin Finucane for The Boston Globe. “The mask is made of silicone rubber and includes one or two detachable N95 filters, but those filters require much less N95 material than a traditional N95 mask,” writes Finucane.

Associated Press

MIT alumnus and philanthropist David Koch has died, reports Steve Peoples and Jennifer Peltz for the Associated Press. Koch was an ardent supporter of cancer research and “donated $100 million in 2007 to create a cancer research institute at the Massachusetts Institute of Technology.”

Financial Times

David Koch, an MIT alumnus known for his philanthropic work, has died at age 79, reports Andrew Edgecliffe-Johnson and Lindsay Fortado for the Financial Times. Koch, who was a basketball star at MIT, “donated or pledged more than $1.3bn in total to causes including cancer research, hospitals and education."

Boston.com

President Emerita Susan Hockfield discusses her new book, “The Age of Living Machines,” her work as a neuroscientist, and the future of science and technology during a curated lunch conversation with HUBweek and Boston.com. Hockfield explains that a revolution spurred by the convergence of biology with engineering will lead to new technologies built by biology.

The Wall Street Journal

In an excerpt from her new book published in The Wall Street Journal, President Emerita Susan Hockfield explores how the convergence between biology and engineering is driving the development of new tools to tackle pressing human problems. Hockfield writes that for these world-changing technologies to be realized requires “not only funding and institutional support but, more fundamentally, a commitment to collaboration among unlikely partners.”

WGBH

President Emerita Susan Hockfield speaks with Jim Braude of WGBH’s Greater Boston about her book, “The Age of Living Machines.” “We are looking at a population of over 9.7 billion by 2050,” explains Hockfield. “We are not going to get there without war or epidemics or starvation if we don’t develop technologies that will allow us to provide energy, food, water, health and health care sustainably.”

HealthDay News

MIT researchers have found that tracking specific changes in the number of chromosomes inside prostate cancer cells might help determine whether tumors should be treated, reports Robert Preidt for HealthDay News. “Besides giving new insights into how prostate tumors form and spread, the chromosomal data might someday be employed clinically to inform risk stratification and treatment decisions,” Preidt explains.

Fast Company

Fast Company reporter Michael Grothaus writes that CSAIL researchers have developed a deep learning model that could predict whether a woman might develop breast cancer. The system “could accurately predict about 31% of all cancer patients in a high-risk category,” Grothaus explains, which is “significantly better than traditional ways of predicting breast cancer risks.”

WCVB

WCVB-TV’s Jennifer Eagan reports that researchers from MIT and MGH have developed a deep learning model that can predict a patient’s risk of developing breast cancer in the future from a mammogram image. Prof. Regina Barzilay explains that the model “can look at lots of pixels and variations of the pixels and capture very subtle patterns.”

HealthDay News

HealthDay News reporter Amy Norton writes that MIT researchers have developed an AI system that can help predict a woman’s risk of developing breast cancer and provide more personalized care. “If you know a woman is at high risk, maybe she can be screened more frequently, or be screened using MRI,” explains graduate student Adam Yala.

Xinhuanet

MIT researchers have developed tiny robots powered by magnetic fields that can be used to bring drugs nanoparticles from the bloodstream into a tumor or disease site in the human body, reports the Xinhua news agency.

NPR

Prof. Regina Barzilay speaks with NPR reporter Richard Harris about her work developing AI systems aimed at improving identification of breast cancer in mammograms, inspired by her experience with the disease. “At every point of my treatment, there would be some point of uncertainty, and I would say, 'Gosh, I wish we had the technology to solve it,’” says Barzilay.