Skip to content ↓

Topic

Koch Institute

Download RSS feed: News Articles / In the Media / Audio

Displaying 151 - 165 of 264 news clips related to this topic.
Show:

Boston Magazine

Boston Magazine reporter Rowan Walrath writes that MIT researchers have developed a new technique that could be used to deliver multi-drug vaccines. The researchers developed a new method for “designing customizable, three-dimensional microparticles that resemble minuscule coffee cups. Each cup…contains a drug or vaccine ‘library’ that can be released at multiple points over an extended period of time.”

Boston Herald

Boston Herald reporter Lindsay Kalter writes that MIT researchers have developed a hydrogel-based capsule that can slowly release medications over several days and could help patients follow complex treatment regimens.  “A lot of people do not take their medication as prescribed,” explains postdoc Jinyao Liu. “With this, you just need a single dose.”

Boston Magazine

MIT researchers have developed a new way to grow liver tissue, writes Jamie Ducharme for Boston Magazine. “These minuscule structures expanded to 50 times their starting size,” Ducharme explains, “and performed normal liver functions like metabolism regulation, bile production, and detoxification.”

WBUR

Reporting for WBUR on efforts to develop a treatment for glioblastoma, Karen Weintraub highlights Prof. Paula Hammond’s work creating a method to get drugs across the body’s blood-brain barrier. “By disguising her tiny, drug-carrying nanoparticles as proteins that normally carry iron across the barrier, she's been able to sneak them past the armor that lines the brain’s blood vessels.”

Boston Herald

MIT researchers have engineered an expandable liver from human liver cells that can grow up to 50 times its original size, reports Lindsay Kalter for the Boston Herald. In the future, the researchers would like to make the expandable livers smarter, “by embedding sensors in them to tell us how they are doing,” explains Prof. Sangeeta Bhatia.

U.S. News & World Report

MIT researchers have developed a new way to engineer liver tissue that involves implanting tiny “seeds” of liver tissue, which expand to perform normal liver functions, reports Robert Preidt for U.S. News & World Report. The technique could one day “help reduce long wait lists for liver transplants.”

Bloomberg TV

In this Bloomberg TV video aired during the July 4th Spectacular, Profs. Sangeeta Bhatia and Robert Langer discuss the Greater Boston area’s prowess in medical research. Langer explains that for his research, which is focused on inventing, “new things in chemical engineering that can change people’s lives in medicine, there is no better place.”   

Boston Globe

During a panel discussion during the Koch Institute’s 16th Annual Cancer Research Symposium, participants discussed how the convergence of biology and engineering could accelerate treatments for cancer and other diseases, writes Robert Weisman for the Boston Globe. “To my mind, this is the 21st century’s innovation story,” said President Emerita Susan Hockfield.

WBUR

Reporting for WBUR, Karen Weintraub speaks with Profs. Angela Belcher, Sangeeta Bhatia and Paula Hammond about their work developing tiny tools to target cancer cells. Bhatia explains that their collaboration feels like, “a dream team of people that are interested in nanoscience and nanotechnology and focusing those advances on cancer.”

Boston Globe

Boston Globe reporter Robert Weisman writes about how a new startup is using technology developed in part by Prof. Robert Langer to try to reverse hearing loss. The company is applying Langer’s research to “regenerate sensory hair cells in the inner ear to treat the noise-induced hearing loss that affects an estimated 48 million Americans and millions more worldwide.”

STAT

STAT reporter Kate Sheridan spotlights the 2017 Koch Institute Image Awards, which aim to recognize visual images produced through life sciences and biomedical research. Sheridan notes that the competition shows “everyone how beautiful biology can be — no microscope required.”

Popular Science

Popular Science reporter Rob Verger writes that MIT researchers have identified a way to prevent the body from developing scar tissue around medical implants. The “discovery involves using drugs to affect the behavior of a type of immune system cell called a macrophage in a way that prevents the buildup of scar tissue.”

United Press International (UPI)

MIT researchers have developed a cost-effective, cell analysis method using graphene sheets, reports Brooks Hays for UPI. The new technique could allow “simple sheets of graphene oxide to function as a diagnostics device for medical and biological tests,” Hays explains. 

CBC News

Postdoctoral associate Phillip Nadeau speaks with CBC reporter Nora Young about a new ingestible electronic device developed by MIT researchers that could potentially be used to transmit patient data or deliver medications. Young explains that the new device “doesn't require a battery, because it's able to create an electrical current from the acid in your stomach.”

Science Friday

Research affiliate Giovanni Traverso speaks with Ira Flatow of Science Friday about a new ingestible device powered by stomach acid. “When you start thinking about keeping a system inside of the body for a long time,” Traverso explains, “powering that system becomes a challenge, and that’s exactly what we tried to aim to address here with this study.”