MIT welcomes Frida Polli as its next visiting innovation scholar
The neuroscientist turned entrepreneur will be hosted by the MIT Schwarzman College of Computing and focus on advancing the intersection of behavioral science and AI across MIT.
The neuroscientist turned entrepreneur will be hosted by the MIT Schwarzman College of Computing and focus on advancing the intersection of behavioral science and AI across MIT.
Researchers at MIT, NYU, and UCLA develop an approach to help evaluate whether large language models like GPT-4 are equitable enough to be clinically viable for mental health support.
A new technique identifies and removes the training examples that contribute most to a machine-learning model’s failures.
Using LLMs to convert machine-learning explanations into readable narratives could help users make better decisions about when to trust a model.
MIT CSAIL director and EECS professor named a co-recipient of the honor for her robotics research, which has expanded our understanding of what a robot can be.
Researchers develop “ContextCite,” an innovative method to track AI’s source attribution and detect potential misinformation.
Acclaimed keyboardist Jordan Rudess’s collaboration with the MIT Media Lab culminates in live improvisation between an AI “jam_bot” and the artist.
MIT CSAIL researchers used AI-generated images to train a robot dog in parkour, without real-world data. Their LucidSim system demonstrates generative AI's potential for creating robotics training data.
MIT and IBM researchers are creating linkage mechanisms to innovate human-AI kinematic engineering.
A new design tool uses UV and RGB lights to change the color and textures of everyday objects. The system could enable surfaces to display dynamic patterns, such as health data and fashion designs.
Researchers show that even the best-performing large language models don’t form a true model of the world and its rules, and can thus fail unexpectedly on similar tasks.
“MouthIO” is an in-mouth device that users can digitally design and 3D print with integrated sensors and actuators to capture health data and interact with a computer or phone.
By allowing users to clearly see data referenced by a large language model, this tool speeds manual validation to help users spot AI errors.
By enabling users to chat with an older version of themselves, Future You is aimed at reducing anxiety and guiding young people to make better choices.
The program will invite students to investigate new vistas at the intersection of music, computing, and technology.