Skip to content ↓

Topic

Health sciences and technology

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 317 news clips related to this topic.
Show:

TechCrunch

NeuroBionics, an MIT spinoff, has developed bioelectric fibers that could deliver neuromodulation therapy aimed at helping people who live with neurological conditions like depression, epilepsy, and Parkinson’s disease, reports Connie Loizos for TechCrunch. “The fibers are powered by a fairly standard implantable battery that’s shaped like an AirPod case, designed to last five to 10 years, and is used by other medical device makers for spinal cord stimulation, among other things,” writes Loizos. 

Boston Business Journal

Boston Business Journal reporter Hannah Green spotlights the MIT Health and Life Sciences Collaborative, a new effort designed to connect researchers, medical professionals, and industry leaders in a shared mission to address some of the most pressing health challenges of our time. Green notes that the collaborative aims to “spur high-impact discoveries and health solutions through interdisciplinary projects across engineering, science, AI, economics, business, policy, design, and the humanities.” 

Forbes

Researchers at MIT have developed a new AI model capable of assessing a patient’s risk of pancreatic cancer, reports Erez Meltzer for Forbes. “The model could potentially expand the group of patients who can benefit from early pancreatic cancer screening from 10% to 35%,” explains Meltzer. “These kinds of predictive capabilities open new avenues for preventive care.” 

Forbes

Forbes reporter Ulrich Boser spotlights Prof. Rosalind Picard and her work toward advancing “the capability of computers to recognize human emotions.” “AI can enhance learning, and chatbots can supplement many aspects of teaching and tutoring but true success lies in establishing better tutoring platforms to support – not replace – teachers,” writes Boser. 

Nature

MIT scientists have created a high-resolution brain map of the neurons that encode the meanings of various words, reports Sara Reardon for Nature. “The results hint that, across individuals, the brain uses the same standard categories to classify words,” Reardon explains, “helping us to turn sound into sense.” 

USA Today

Sonia Vallabh and Eric Minikel, senior group leaders from the Broad Institute have created a gene-editing tool to combat prion diseases, reports Karen Weintraub for USA Today. The approach “should also work against diseases such as Huntington's, Parkinson's, ALS and even Alzheimer's, which result from the accumulation of toxic proteins,” Weintraub writes.

Forbes

Cofounded by postdoctoral associate Wen Shuhao and postdoctoral fellows Ma Jian and Lai Lipeng, biotech startup Xtalpi "combines AI, quantum physics, cloud computing and robotic automation to find novel molecules that could be developed into new medicines,” reports Zinnia Lee for Forbes. “Xtalpi has also recently expanded into discovering new chemical compounds for applications such as agriculture, cosmetics, healthcare, as well as petrochemicals and new materials for electric vehicle batteries,” writes Lee.

HealthDay News

MIT researchers have developed microneedle patches that are capable of restoring hair growth in alopecia areata patients, reports Ernie Mundell for HealthDay. The team’s approach includes a, “patch containing myriad microneedles that is applied to the scalp,” writes Mundell. “It releases drugs to reset the immune system so it stops attacking follicles.” 

New Scientist

Prof. Giovanni Traverso and colleagues have developed a new ingestible sensor that could be used to help diagnose gastrointestinal conditions, reports Jeremy Hsu for New Scientist. “Eventually, the futuristic device could provide treatments for gut illnesses through electrical stimulation via additional electrodes embedded in the sensor,” Hsu notes.  

Time Magazine

Prof. Linda Griffith and Stuart Orkin '67 were named to this year’s Time 100 Health list, which recognizes innovators leading the way to new health solutions. Griffith, who was honored for her work engineering a uterine organoid to study endometriosis, explains that in the future engineered organoids could be used to find the most effective treatments for patients. “We have all the genetic information and all the information from the patient’s exposure to infections, environmental chemicals, and stress that would cause the tissues to become deranged in some way, all captured in that organoid,” Griffith explains. 

Politico

MIT researchers have found that “when an AI tool for radiologists produced a wrong answer, doctors were more likely to come to the wrong conclusion in their diagnoses,” report Daniel Payne, Carmen Paun, Ruth Reader and Erin Schumaker for Politico. “The study explored the findings of 140 radiologists using AI to make diagnoses based on chest X-rays,” they write. “How AI affected care wasn’t dependent on the doctors’ levels of experience, specialty or performance. And lower-performing radiologists didn’t benefit more from AI assistance than their peers.”

Fast Company

Writing for Fast Company, Senior Lecturer Guadalupe Hayes-Mota '08, SM '16, MBA '16 shares methods to address the influence of AI in healthcare. “Despite these advances [of AI in healthcare], the full spectrum of AI’s potential remains largely untapped,” explains Hayes-Mota. “Systemic hurdles such as data privacy concerns, the absence of standardized data protocols, regulatory complexities, and ethical dilemmas are compounded by an inherent resistance to change within the healthcare profession. These barriers underscore the urgent need for transformative action from all stakeholders to fully harness AI’s capabilities.”

Forbes

Senior Lecturer Guadalupe Hayes-Mota writes for Forbes about the ways AI is reshaping drug development. “In the next three years, we can anticipate a more streamlined, efficient and cost-effective drug development process, ultimately leading to faster access to life-saving drugs for patients worldwide,” Hayes-Mota writes. “This is not just an evolution; it is a revolution in healthcare powered by the intelligence of machines.”

The Boston Globe

Elemind Technologies, a neuro-tech startup founded by scientists from MIT and elsewhere, is developing, “an approach that redirects brain wave through non-invasive stimulation – using sound, light, touch and electric pulses –  to potentially address a range of neurological conditions in a more targeted ways than drugs,” reports Robert Weisman for The Boston Globe