Skip to content ↓

Topic

Genetic engineering

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 67 news clips related to this topic.
Show:

Boston.com

Prof. Feng Zhang has been named to STAT’s 2024 STATUS List, which highlights the leaders shaping the future of health and life sciences, reports Dialynn Dwyer for Boston.com. “Among the companies he’s co-founded is Editas Medicine, which as of late 2023 was now the official holder of patent rights to the CRISPR-Cas9 gene editing tool used in the sickle cell therapy Casgevy, and Aera Therapeutics, which in February 2023 raised $193 million in venture funding to develop protein nanoparticles as a way of delivering gene editing,” Dwyer writes.

Nature

MIT researchers have “used an algorithm to sort through millions of genomes to find new, rare types of CRISPR systems that could eventually be adapted into genome-editing tools,” writes Sara Reardon for Nature. “We are just amazed at the diversity of CRISPR systems,” says Prof. Feng Zhang. “Doing this analysis kind of allows us to kill two birds with one stone: both study biology and also potentially find useful things.”

Science

MIT researchers have discovered an RNA-guided DNA-cutting enzyme in eukaryotes, reports Science. “The researchers speculate that eukaryotic cells may have gained the newly identified editing genes from transposable elements—so-called jumping genes—they received from bacteria,” writes Science.

Popular Science

MIT researchers have identified a new biological editing system that could “potentially be even more precise than CRISPR gene editing,” reports Laura Baisas for Popular Science. The new system, based on a protein called Fanzor, is “the first programmable RNA-guided system discovered in eukaryotes,” Baisas notes.

The Boston Globe

Boston Globe reporter Ryan Cross spotlights Chroma Medicine, a biotech startup co-founded by MIT researchers that is “developing a new class of gene editing technologies that could control how our genetic code is read without changing the code itself.” Cross explains that Chroma Medicine’s technology could “have broad applications for treating both rare and common diseases.”

The Boston Globe

Aera Therapeutics, founded by Prof. Feng Zhang, is working to “debut a type of protein nanoparticle that it believes can be used to ferry all sorts of genetic medicines around the body,” reports Lisa Jarvis for Bloomberg.

The Boston Globe

Prof. Feng Zhang founded Aera Therapeutics, a startup working to deliver curative genetic medicine to hard-to-reach parts of the body, reports Ryan Cross for The Boston Globe. “If Aera’s approach works in people, it could broaden the reach of genetic therapies, which currently have limited clinical applications – partly because there aren’t enough methods for getting those medicines to hone in on the right cells,” writes Cross.  

NPR

Lydia Villa Komaroff PhD ’75 speaks with NPR reporter Emily Kwong about her work in gene editing. Biotechnology and genetic engineering were “enormously impactful,” says Komaroff. “So impactful that molecular biology pretty much disappeared as a field, it has become a tool that is of use in every field of biology and medicine today.”

Science

A study co-authored by researchers from MIT found that a person’s ancestry can impact CRISPR’s ability to edit genomes as intended, “particularly in people of African descent, whose genomes are most likely to differ from those used to steer CRISPR to a specific gene,” reports Jocelyn Kaiser for Science.

New Scientist

Prof. Kevin Esvelt speaks with New Scientist reporter Michael Le Page about his work outlining a roadmap to help counter the risk posed by pandemic terrorism. “The message is, this is serious but this is totally solvable,” says Esvelt.

The Boston Globe

Scientists from MIT, Duke and Stanford have developed a new technique to make gene therapies safer and more effective, reports Ryan Cross for The Boston Globe. “It’s about making these therapies much smarter and programmable,” says Jonathan S. Gootenberg, a research scientist at the McGovern Institute.

The Boston Globe

Boston Globe reporter David Abel spotlights the Mice Against Ticks project, which is aimed at preventing tick-borne diseases such as Lyme disease through immunizing mice.  “With so many people suffering from Lyme every single day, which is an awful disease, we need a solution urgently,” explains graduate student and Mice Against Ticks research director Joanna Buchthal. “This offers a real, if revolutionary, way to tackle the problem.”

TechCrunch

MIT startup Volta Labs is developing a new instrument that can automate the processes used to prepare genetic samples, reports Emma Betuel for TechCrunch. CEO and co-founder Udayan Umapathi ’17 is confident that with the right programming, the platform could allow “liquids to be manipulated in even more complex ways, like using magnetic fields to draw certain molecules out of samples for further analysis,” writes Betuel.

United Press International (UPI)

UPI reporter Brooks Hays writes that a new tool developed by researchers from MIT and other institutions can precisely control gene expression without altering the underlying gene sequence. “Scientists hope this new ability to silence any part of the human genome will lead to powerful insights into functionality of the human genome, as well as inspire new therapies for a variety of diseases and genetic disorders,” writes Hays.

The Boston Globe

Prof. Kevin Esvelt writes for The Boston Globe about the need for transparency surrounding gene-editing research. “We should establish transparent, publicly accessible standards to help determine whether, when, and how research that could impact everyone should proceed,” Esvelt explains.