Skip to content ↓

Topic

Fluid dynamics

Download RSS feed: News Articles / In the Media / Audio

Displaying 46 - 60 of 68 news clips related to this topic.
Show:

Wired

In this Wired video, Prof. Anette “Peko” Hosoi explains how she and her team designed a material, inspired by semiaquatic mammals, to help keep surfers warm. “We want to understand the physical mechanisms behind the biological solution and then adapt those mechanisms into engineering design." 

CBC News

CBC reporter Nora Young explores how MIT researchers have developed a new material, inspired by beaver fur, that could help keep surfers warm. “In sports technology there's a great need for textiles that have great insulating properties in water, but still let you stay agile and nimble,” explains graduate student Alice Nasto. 

Scientific American

Graduate student Alice Nasto speaks with Cynthia Graber of Scientific American about her research designing a material inspired by the fur that keeps beavers and sea otters warm. Nasto explains that the fur "evolved to trap air, and this air provides a layer of insulation for them in water.”

ABC News

ABC News reporter Gillian Mohney writes that Prof. Lydia Bourouiba has captured footage of a person sneezing, showing how far sneeze droplets can travel. Bourouiba found that “large droplets tended to land within 1 to 2 meters (about 3 to 6 feet) and that small droplets could get as far as 6 to 8 meters away (19 to 26 feet).”

Nature

In this article and video, Nature reporter Corie Lok spotlights Prof Lydia Bourouiba’s work studying the fluid dynamics of coughing and sneezing. Bourouiba explains that her research combines “fluid mechanics to problems that are relevant in health and epidemiology to understand better how pathogens are transmitted.”

Tech Insider

Tech Insider’s Chris Weller reports on a new study by MIT researchers that examines how sneezes travel and spread viruses. The findings could help researchers “predict and prevent disease spread,” Weller explains. “If they know how quickly a pathogen spreads via sneeze, then they can learn more about the risks posed by the viruses themselves.”

ABC News

MIT researchers used high-speed cameras to examine how sneezes travel, reports Gillian Mohney for ABC News. The researchers found that “instead of a uniform cloud of droplets, a single sneeze would fragment in the air similar to paint being flung onto a canvas.”

Popular Science

Popular Science reporter Alexandra Ossola writes that MIT researchers are examining how drops of fluid from a sneeze travel. Ossola explains that gaining a “better understanding of these drops form and spread could help researchers and engineers stop the spread of disease, especially in enclosed spaces." 

CBS Boston

MIT researchers have examined how droplets are formed in high-propulsion sneeze clouds, according to CBS Boston. “Droplets are not all already formed and neatly distributed in size at the exit of the mouth, as previously assumed in the literature,” explains Prof. Lydia Bourouiba. 

BBC News

Prof. Lydia Bourouiba has modeled how droplets are formed after a person sneezes, reports Jonathan Webb for BBC News. “The process is important to understand because it determines the various sizes of the final droplets - a critical factor in how a sneeze spreads germs,” writes Webb.

US News & World Report

MIT researchers have found that the high-velocity cloud created by the average human sneeze can contaminate a room in minutes, writes Robert Preidt for U.S. News & World Report. Sneeze droplets "undergo a complex cascading breakup that continues after they leave the lungs, pass over the lips and churn through the air," explains Prof. Lydia Bourouiba.

Nautilus

In an article for Nautilus, Elizabeth Preston writes about Prof. Lydia Bourouiba’s work examining how rain can spread crop diseases. Through a close examination of high-speed images, Bourouiba found that how raindrops bounce off different plant leaves “is really at the root” of the spread of pathogens among plants. 

Scientific American

Scientific American reporter Mark Fischetti examines a new MIT study that found that raindrops can spread certain crop diseases. Fischetti explains that the research could be useful in helping farmers develop new techniques for preventing the spread of disease among crops.

PBS

In a piece for PBS, Jennifer Ouellette writes about Professor John Bush’s work with quantum mechanics, in particular his replication of a quantum corral. “Time will tell whether the quantum-like behavior of the walking [droplets] is mere coincidence,” says Bush. 

HuffPost

The Huffington Post reports on new MIT research examining how sperm cells travel and function. The team’s findings, which show how sperm travel upstream so efficiently, could lead to advances in artificial insemination.