Popular Science
Profs. Ruonan Han and Qing Hu speak with Popular Science reporter Rahul Rao about their work with terahertz waves. “There’s a laundry list of potential applications,” says Hu of the promise of terahertz waves.
Profs. Ruonan Han and Qing Hu speak with Popular Science reporter Rahul Rao about their work with terahertz waves. “There’s a laundry list of potential applications,” says Hu of the promise of terahertz waves.
Indian Express reporter Sethu Pradeep writes that MIT researchers have developed a low-energy security chip designed to prevent side channel attacks on smart devices. “It can be used in any sensor nodes which connects user data,” explains graduate student Saurav Maji. “For example, it can be used in monitoring sensors in the oil and gas industry, it can be used in self-driving cars, in fingerprint matching devices and many other applications.”
U.S. Secretary of Commerce Gina Raimondo visited MIT.nano this week, where she emphasized the importance of investing in semiconductor research and manufacturing, and noted that MIT is the “gold standard” for collaboration between academia and industry, reports Jake Freudberg for GBH News. “Ultimately, what we need is the great ideas and research that are beginning in universities to be turned into products made at scale in America,” said Raimondo.
WCBV reporter Sharman Sacchetti spotlights U.S. Commerce Secretary Gina Raimondo’s visit to MIT.nano. “Investing in chip manufacturing and supply chain domestically will allow us to make more goods in America, which will bring down inflation,” said Raimondo of the importance of boosting domestic manufacturing of semiconductors.
TechCrunch reporter Haje Jan Kamps writes that MIT researchers have developed an “electronically steerable terahertz antenna array, which operates like a controllable mirror.” The new device “may enable higher-speed communications and vision systems that can see through foggy or dusty environments.”
Prof. Jesús del Alamo speaks with Bloomberg Radio’s Janet Wu about a new report by MIT researchers that explores how the U.S. can regain leadership in semiconductor manufacturing and production. “Leadership in microelectronics is really critical for economic progress and also security concerns,” says del Alamo.
A new white paper by MIT researchers underscores the importance of regaining the U.S.’s innovation leadership in the area of semiconductor manufacturing and calls for increased investment at the research level to help advance this field, reports Stephen Shankland for CNET. "The hollowing out of semiconductor manufacturing in the US is compromising our ability to innovate in this space and puts at risk our command of the next technological revolution,” write the report’s authors. “To ensure long-term leadership, leading-edge semiconductor manufacturing in the US must be prioritized and universities activities have to get closer to it."
MIT researchers have developed new programmable fibers that could help transform clothing into wearable computers, reports Kyle Mizokami for Popular Mechanics. “The polymer fibers contain hundreds of tiny silicon microchips that, once electrified, can sustain a digital connection across tens of meters,” Mizokami writes.
Forbes contributor Eric Tegler spotlights how MIT researchers are developing a fiber with digital capabilities. “Individuals wearing garments with digital fibers could be alerted to vital information about their physiology and environmental exposures, and share health/injury and location data with support forces,” Tegler explains.
Washington Post reporter Dalvin Brown spotlights Nextiles, a company spun out of MIT and the NSF that has crafted machine-washable smart fabrics that capture biometric data. “Just imagine all the biochemicals that come out of you and get released into your clothes,” says Prof. Yoel Fink of the future of e-textiles. “Today, all of that stuff gets erased in the washing machine. But at some point, your fabric could learn, listen to subtle changes, and alert you to go to the doctor for a checkup.”
MIT scientists have demonstrated a plastic polymer cable that can transmit data 10 times as fast as USB, reports Payal Dhar for IEEE Spectrum. “For newer standards aiming at much higher data rates, we see the cables getting much thicker, more expensive, and commonly short [because of] technical challenges,” says Prof. Ruonan Han. “We hope this research could [enable] much higher speed for our needs.”
Writing for Science, Charlie Greenwood spotlights how MIT researchers are building upon their pioneering work twisting sheets of graphene together to create superconductors by using twisted graphene to develop working devices. “Many researchers are excited by the promise of exploring electronic devices without worrying about the constraints of chemistry,” writes Greenwood.
Prof. Max Shulaker has fabricated the first foundry-built silicon wafer, a monolithic 3D carbon nanotube integrated circuit, reports Samuel K. Moore for IEEE Spectrum. “We’ve completely reinvented how we manufacture this technology,” explains Shulaker, “transforming it from a technology that only worked in our academic labs to a technology that can and is already today working inside a commercial fabrication facility within a U.S. foundry.”
Prof. Muriel Médard speaks with WCAI’s Living Lab Radio about the potential impact of 5G technologies on a number of industries. “If one can count on reliable services that allow remote operation of certain aspects of our work lives,” Médard explains, “that's where you change the way people work quite a bit.”
In this video, HuffPost highlights a robotic cheetah created by MIT researchers that can perform a backflip from a standing position. HuffPost notes that the robot has a “range of motions, making it agile enough to pick itself up if knocked to the ground.”