Skip to content ↓

Topic

Electrical engineering and computer science (EECS)

Download RSS feed: News Articles / In the Media / Audio

Displaying 616 - 630 of 1074 news clips related to this topic.
Show:

USA Today

USA Today reporter Sean Rossman writes about how MIT researchers have created an ingestible sensor that can monitor the digestive tract and send information to a smartphone or tablet about a person’s health. Rossman explains that the device, “can detect blood in the stomach, something that would otherwise require an endoscopy and sedation.”

Associated Press

MIT researchers have developed an ingestible capsule that uses genetically engineered bacteria to detect potential health problems, reports Carla Johnson for the Associated Press. The researchers hope the capsule could eventually be used to, “find signs of ulcers, inflammatory bowel disease or even colon cancer.”

Wired

Wired reporter Megan Molteni writes that a team of MIT researchers has developed an ingestible sensor that could spot gastrointestinal issues. The sensor contains, “millions of genetically engineered glowing bacteria inside a AAA-battery-sized capsule,” Molteni explains.

Boston Herald

Writing for the Boston Herald, Lindsay Kalter reports that MIT scientists have built an ingestible capsule that could allow doctors to diagnose gastrointestinal diseases without invasive procedures. Graduate student Mark Mimee explains that the device, “sets the stage for having a pill that can give you a big biochemical profile of the gut related to various diseases.”

Popular Mechanics

Popular Mechanics reporter David Grossman writes that a new ingestible medical device developed by MIT researchers could monitor the health of the human gut. Calling the project “a true team effort,” Grossman explains that it required expertise in biological engineering techniques, electronic circuit design, materials, and gastroenterology.

CNBC

MIT spinout Ginkgo Bioworks is highlighted on the 2018 CNBC Disruptor 50 list, reports CNBC’s Andrew Zaleski. Zaleski notes that Ginkgo Bioworks, “has developed an automated process for combining genetic parts that has made it the largest designer of printed DNA in the world. That breakthrough has positioned the start-up to change the face of a variety of industries.”

The Verge

Writing for The Verge, Angela Chen highlights advances in AI that are allowing researchers to discover and understand new materials at a rapid pace. Chen cites a study co-authored by Assistant Prof. Elsa Olivetti, who “developed a machine-learning system that scans academic papers to figure out which ones include instructions for making certain materials.”

CNN

Kaya Yurieff reports for CNN that CSAIL researchers have developed a system that allows the colors of 3-D printed objects to be altered after they have been fabricated. Prof. Stefanie Mueller explains that, “this sort of technology could help minimize the amount of waste that is produced from updating products."

TechCrunch

TechCrunch reporter Brian Heater writes that MIT researchers have created a new system that allows users to change the color of 3-D printed objects. Heater explains that researchers, “are looking to bring color-changing properties to the 3D-printing process in an attempt to help reduce material waste.”

Quartz

Marc Bain of Quartz reports that CSAIL researchers have created a system that changes the color of 3-D printed objects using UV light. The researchers hope this system will allow consumers to, “quickly match accessories to outfits, or let retail stores switch the color of clothing or other items on the spot for customers,” explains Bain. 

Smithsonian Magazine

CSAIL researchers have developed a method that allows the color of 3-D printed objects to change after they have been printed, writes Emily Matchar for Smithsonian. The method uses, “UV light to change the pixels on an object from transparent to colored, and then a regular office projector to turn them from colored to transparent,” explains Prof. Stefanie Mueller.

Wired

Wired reporter Arielle Pardes Gear writes that CSAIL researchers have developed a new system, called ColorFab, that makes it possible to change the color of 3-D printed objects after they have been created. ColorFab allows users to change an object’s color, “by returning to the ColorFab interface, selecting the areas to recolor, and then activating those areas with UV light.”

Scientific American

MIT researchers are stress-testing AI systems by tricking them into misidentifying images, writes Dana Smith of Scientific American. Graduate student Anish Athalye notes that some neural nets are outperforming humans, “but they have this weird property that it seems that we can trick them pretty easily.”

BBC News

Graduate student Achuta Kadambi speaks with the BBC’s Gareth Mitchell about the new depth sensors he and his colleagues developed that could eventually be used in self-driving cars. “This new approach is able to obtain very high-quality positioning of objects that surround a robot,” Kadambi explains. 

Times Higher Education

Times Higher Ed reporter Matthew Reisz highlights Prof. Daniel Jackson’s book, “Portraits of Resilience.” Reisz writes that, “MIT and its press are to be congratulated on a book – given out free to all this year’s new students – that not only addresses head on the issue of mental health within higher education but is so frank about how this plays out within its own institution.”