Skip to content ↓

Topic

Drones

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 99 news clips related to this topic.
Show:

Noticias Telemundo

In this interview (in Spanish), graduate students Suhan Kim and Yi-Hsuan (Nemo) Hsiao speak with Telemundo correspondent Miriam Arias about their work developing insect-sized robots to assist with agricultural needs. “There might be one year where you have a lot of bees in the field that help you pollinate everything. Maybe the next year, it might be affected by the temperature or something [and] you just don’t have enough bees to help you do so,” explains Hsiao. 

Interesting Engineering

MIT engineers have developed a new training method to help ensure the safe operation of multiagent systems, including robots, search-and-rescue drones and self-driving cars, reports Jijo Malayil for Interesting Engineering. The new approach “doesn’t focus on rigid paths but rather enables agents to continuously map their safety margins—the boundaries within which they must stay,” writes Malayil. 

Tech Briefs

Graduate students Suhan Kim and Yi-Hsuan (Nemo) Hsiao speak with Tech Briefs reporter Andrew Corselli about their work developing insect-sized robots capable of artificial pollination. “Typical drones use electromagnetic motors plus propellers. But, our system is a little different in that we are primarily using an artificial muscle,” explains Kim. 

Reuters

Researchers from MIT and elsewhere have develop insect-sized robots that could one day be used to help with farming practices like artificial pollination, reports Alice Rizzo for Reuters. "These type of robots will open up a very new type of use case," says graduate student Suhan Kim. "We can start thinking of using our robot, if it works well, for tools like indoor farming."

New Scientist

Researchers at MIT have developed an insect-like, flying robot capable of performing acrobatic maneuvers and hovering in the air for up to 15 minutes without failing, reports Alex Wilkins for New Scientist. “By having a hugely increased [flying] lifetime, we were able to work on the controller parts so that the robot can achieve precise trajectory tracking, plus aggressive maneuvers like somersaults,” says graduate student Suhan Kim. 

Axios

Axios reporter Alex Fitzpatrick spotlights MightyFly, an aviation startup founded by Manal Habib ’11 that is developing a large, autonomous electric vehicle takeoff and landing cargo drone that has been approved by the Federal Aviation Administration for a flight corridor. "The use case is B2B expedited logistics," says Habib. "Think of deliveries from a manufacturer to suppliers. Think of deliveries from a lab to a hospital, or from a warehouse or pharmacy, as well as to improve deliveries to an oil rig or to a farm or a mining site, as well as for DOD use cases."

Tech Times

MIT CSAIL researchers have developed a new air safety system, called Air-Guardian, that is designed to serve as a “proactive co-pilot, enhancing safety during critical moments of flight,” reports Jace Dela Cruz for Tech Times

Forbes

Forbes reporter Rob Toews spotlights Prof. Daniela Rus, director of CSAIL, and research affiliate Ramin Hasani and their work with liquid neural networks. “The ‘liquid’ in the name refers to the fact that the model’s weights are probabilistic rather than constant, allowing them to vary fluidly depending on the inputs the model is exposed to,” writes Toews.

TechCrunch

Researchers at MIT have developed a new artificial intelligence system aimed at helping autopilot avoid obstacles while maintaining a desirable flight path, reports Kyle Wiggers for TechCrunch. “Any old algorithm can propose wild changes to direction in order to not crash, but doing so while maintaining stability and not pulping anything inside is harder,” writes Wiggers.

Popular Science

Popular Science reporter Jamie Dickman writes that using liquid neural networks, MIT researchers have “trained a drone to identify and navigate toward objects in varying environments.” Dickman notes that: “These robust networks enable the drone to adapt in real-time, even after initial training, allowing it to identify a target object despite changes in their environment.”

The Daily Beast

Researchers at MIT have developed a new type of autonomous drone that uses advanced neural networks to fly, reports Tony Ho Tran for The Daily Beast. “The new design allows the drone to make better decisions when flying through completely new environments,” writes Tran, “and could have future applications in self-driving cars, search and rescue operations, wildlife monitoring, or even diagnosing medical issues.”

TechCrunch

MIT researchers have developed Robust MADER, an updated version of a previous system developed in 2020 to help drones avoid in-air collisions, reports Brian Heater for TechCrunch. “The new version adds in a delay before setting out on a new trajectory,” explains Heater. “That added time will allow it to receive and process information from fellow drones and adjust as needed.”

Popular Science

MIT engineers have developed a new technique that enables bug-sized aerial robots to handle a sizeable amount of damage and still fly, reports Andrew Paul for Popular Science. “The new repair techniques could come in handy when using flying robots for search-and-rescue missions in difficult environments like dense forests or collapsed buildings,” writes Paul.

The Washington Post

Washington Post reporter Pranshu Verma spotlights Prof. Kevin Chen’s research creating flying lightning bug robots that could be used to pollinate crops in vertical farms or even in space. “If we think about the insect functions that animals can’t do,” says Chen, “that inspires us to think about what smaller, insect-scale robots can do, that larger robots cannot.”