Skip to content ↓

Topic

Department of Energy (DoE)

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 115 news clips related to this topic.
Show:

Boston.com

Boston.com reporter Marta Hill spotlights how MIT scientists used a new polymerization technique to create a material that serves as both a durable coating and strong structural element. “We now have a completely new way of making materials as two-dimensional polymers, [which] means we’re going to get new properties,” says Prof. Michael Strano. “This material that we’ve made happens to be pretty exceptional. It’s very strong and very light. It’s unusual for a polymer.”

WHDH 7

WHDH spotlights MIT scientists who have created a new material as strong as steel and as light as plastic. “There is excitement because that may open up whole new classes of materials that are strong in new kinds of ways,” says Prof. Michael Strano.

CBS Boston

MIT scientists have created a new strong yet light material that could be mass produced and used as coatings for cars, phones or even as building material for bridges, reports CBS Boston. “We don’t usually think of plastics as being something that you could use to support a building, but with this material, you can enable new things,” says Prof. Michael Strano.

Fast Company

Fast Company reporter Mark Wilson writes that MIT researchers have developed a new type of material that is two times stronger than steel with just one-sixth the material bulk. “The material has implications for everything from how we build the gadgets we hold in our hands to the buildings we live in,” writes Wilson.

USA Today

MIT researchers have developed a new material that is as strong a steel but as light as plastic, reports Michelle Shen for USA Today. “It can be easily manufactured in large quantities, and the use cases range from lightweight coatings for cars and phones to building blocks for massive structures such as bridges,” writes Shen.

Physics World

Physics World reporter Tim Wogan writes that MIT researchers used machine learning techniques to identify a mysterious “X” particle in the quark–gluon plasma produced by the Large Hadron Collider. “Further studies of the particle could help explain how familiar hadrons such as protons and neutrons formed from the quark–gluon plasma believed to have been present in the early universe,” writes Wogan.

Popular Science

Using machine learning techniques, MIT researchers have detected “X particles” produced by the Large Hadron Collider, reports Rahul Rao for Popular Science. “The results tell us more about an artifact from the very earliest ticks of history, writes Rao. “Quark-gluon plasma filled the universe in the first millionths of a second of its life, before what we recognize as matter—molecules, atoms, or even protons or neutrons—had formed.”

VICE

Scientists have discovered “X-particles” in the aftermath of collisions produced in the Large Hadron Collider, which could shed light on the structure of these elusive particles, reports Becky Ferreira for Vice. “X particles can yield broader insights about the type of environment that existed in those searing and turbulent moments after the Big Bang,” writes Ferreira.

United Press International (UPI)

UPI reporter Brian Dunleavy writes that MIT researchers have developed a new way to potentially expand sources of biofuel to include straw and woody plants. "Our goal is to extend this technology to other organisms that are better suited for the production of these heavy fuels, like oils, diesel and jet fuel," explains Prof. Gregory Stephanopoulos.

The Hill

Prof. Jessika Trancik speaks with The Hill reporter Rachel Frazin about her research that demonstrates people can save more than 30% in emissions by switching to electric vehicles. “One can see an immediate reduction in greenhouse gas emissions, even with today’s power grid and today’s power supply. It’s a really important step to electrify as many vehicles as possible, and quickly,” says Trancik. 

WBUR

Prof. Jessika Trancik speaks with Jesse Remedios of WBUR about her new study that identifies locations where electric vehicle charging stations would have the most impact and help increase the adoption of electric vehicles. “It's important to make sure that chargers are placed where people can charge without having to delay their activities,” Trancik says. 

New York Times

New York Times reporter Brad Plumer spotlights a new study by Prof. Jessika Trancik that finds “new chargers on residential streets, as well as high-speed charging stations along highways, would go a long way to supporting an electric-vehicle boom.” 

Mashable

Mashable reporter Sasha Lekach spotlights a new study by MIT researchers that finds installing more charging stations close to residences and in locations that match where people naturally stop, would help increase usage of electric vehicles. The researchers found that “this helps to make charging more accessible while drivers are going about everyday activities.”

The Economist

MIT researchers have developed a new system that uses solar power to sterilize medical tools, according to The Economist. The system “should cost just a tenth as much to make commercially as a conventional autoclave of equivalent potency.”

Financial Times

Financial Times reporter Henry Sanderson spotlights Prof. Donald Sadoway’s work developing new battery chemistries that would allow batteries to store energy for longer than six hours.