Skip to content ↓

Topic

DNA

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 59 news clips related to this topic.
Show:

Wired

Prof. Ron Weiss co-founded Strand Therapeutics, a biotech company developing mRNA therapies, reports Emily Mullin for Wired. “The notion is that genetic circuits can really have significant impact on safety and efficacy,” says Weiss. “This begins to really open up the door for creating therapies whose sophistication can match the underlying complexity of biology.”

Nature

MIT researchers have “used an algorithm to sort through millions of genomes to find new, rare types of CRISPR systems that could eventually be adapted into genome-editing tools,” writes Sara Reardon for Nature. “We are just amazed at the diversity of CRISPR systems,” says Prof. Feng Zhang. “Doing this analysis kind of allows us to kill two birds with one stone: both study biology and also potentially find useful things.”

Forbes

Jasmina Aganovic ’09 founded Future Society, a brand that uses sequenced DNA from extinct flowers to create new scents, reports Celia Shatzman for Forbes. “[With] plants that are from another time, never before have we been able to time travel through smell,” says Aganovic. “But now we can do that, thanks specifically to DNA sequencing. It’s an example of where we're starting off with this concept of limitless nature. It isn't just about stories; it's also about performance.”

Nature

Researchers at MIT and elsewhere have identified key cell types that may protect the brain against Alzheimer’s symptoms, reports Sara Reardon for Nature. “Most Alzheimer’s research has focused on excitatory neurons, which relay electrical signals to activate other neurons,” explains Reardon. “But the authors found that the cells with reelin or somatostatin were inhibitory neurons, which halt neuronal communication. These inhibitory cells might therefore have a previously unknown role in the types of cognitive function that are lost during Alzheimer’s.”

Science

MIT researchers have discovered an RNA-guided DNA-cutting enzyme in eukaryotes, reports Science. “The researchers speculate that eukaryotic cells may have gained the newly identified editing genes from transposable elements—so-called jumping genes—they received from bacteria,” writes Science.

Popular Science

MIT researchers have identified a new biological editing system that could “potentially be even more precise than CRISPR gene editing,” reports Laura Baisas for Popular Science. The new system, based on a protein called Fanzor, is “the first programmable RNA-guided system discovered in eukaryotes,” Baisas notes.

Boston 25 News

Researchers at MIT have developed a new nanoparticle sensor that can detect cancerous proteins through a simple urine test. “The researchers designed the tests to be done on a strip of paper, similar to the at-home COVID tests everyone became familiar with during the pandemic,” writes Lambert. “They hope to make it as affordable and accessible to as many patients as possible.”

The Boston Globe

Boston Globe reporter Ryan Cross spotlights Chroma Medicine, a biotech startup co-founded by MIT researchers that is “developing a new class of gene editing technologies that could control how our genetic code is read without changing the code itself.” Cross explains that Chroma Medicine’s technology could “have broad applications for treating both rare and common diseases.”

The Boston Globe

Jake Becraft PhD ’19 and former postdoctoral associate Tasuku Kitada co-founded Strand Therapeutics, a biotech firm developing mRNA therapies for cancer, reports Ryan Cross for The Boston Globe. They created “a way to activate mRNA in the presence of particular microRNAs – a much more useful application for therapies,” writes Cross. 

The Boston Globe

Researchers at MIT have developed new gene-editing technology that can move large sequences of DNA into the human genome, reports Ryan Cross for The Boston Globe. “The molecular tool gives scientists a new way to completely replace broken genes, paving the way to potential cures for diseases such as cystic fibrosis,” writes Cross.

Nature

Nature reporter Neil Savage spotlights Prof. Michael Strano’s work developing a new technique to use nanoparticles to alter the biology of living plants. Savage writes that the new technique can allow for "the design of nanoparticles that carry gene-editing machinery to targeted areas to rewrite the plant’s genome and imbue it with properties such as pest and disease resistance,” writes Savage.

CNN

As a research assistant at MIT, Ai Hasegawa designed a project meant to help same-sex couples have a baby that shares both parents’ DNA, writes Jacqui Palumbo for CNN. “With progressing stem cell research and technology – such as the gene-editing technique CRISPR – it is only a matter of time,” writes Palumbo.

TechCrunch

TechCrunch reporter Kate Park spotlights Catalog, a startup founded by MIT graduates that is “developing an energy-efficient, cost-competitive and more secure data storage and computation platform by using synthetic DNA.”

United Press International (UPI)

UPI reporter Brooks Hays writes that MIT researchers have developed a new technique for labeling and retrieving DNA files, “a breakthrough that could help shrink the carbon footprint of the rapidly expanding digital world.”