Skip to content ↓

Topic

DNA

Download RSS feed: News Articles / In the Media / Audio

Displaying 46 - 60 of 61 news clips related to this topic.
Show:

The Washington Post

MIT researchers have developed a new technique that uses the CRISPR gene-editing system to diagnose diseases, reports Joel Achenbach for The Washington Post. Achenbach explains that the tool could potentially be used to “detect not only viral and bacterial diseases but also potentially for finding cancer-causing mutations.”

The Atlantic

MIT researchers have developed a new technique for making vaccines using freeze-dried cells, reports Ed Yong for The Atlantic. Yong explains that in addition to producing medicines, the technique provides a new way of “detecting important diseases, like Zika and Ebola, without relying on laboratories or sequencing machines.”

STAT

Eric Boodman writes for STAT that MIT researchers have developed a technique to produce biopharmaceuticals in remote locations. “Instead of making the drugs and then trying to keep them refrigerated over thousands of miles,” Boodman writes, the researchers, “want to give people the ingredients. These components don’t require refrigeration, and the instructions are as simple as they come: Just add water.”

New Scientist

Prof. Kevin Esvelt and his team at the Media Lab hope to make gene drives safer by splitting genes into three or more elements, writes New Scientist. “If it works, it could allow a gene drive to be tested locally, to combat malaria, say, without spreading to other cities,” the article notes.

New Scientist

New Scientist reporter Colin Barras writes that MIT researchers have found they can program C2c2, an enzyme found in bacteria, to serve as an RNA-editing tool. Barras writes that the tool “promises to transform our understanding of RNA’s role in our growth and development, and provide a new avenue for treating infectious diseases and cancer.”

New Scientist

MIT researchers have developed a programming language that allows users to design DNA circuits for living cells, writes Andy Coghlan for New Scientist. “We take the same approach as for designing an electronic chip,” says Prof. Christopher Voigt. “Every step in the process is the same – it’s just that instead of mapping the circuit to silicon, it’s mapped to DNA.”

Scientific American

Christopher Intagliata reports for Scientific American about the programming language Prof. Christopher Voigt’s team developed for living cells. Intagliata explains that, “the researchers used the platform to design 60 genetic circuits, which they then ran inside E. coli bacteria. Many of these DNA-based circuits allow bacteria to sense environmental data…and respond in various ways.”

Nature

MIT researchers have developed a programming language for living cells, reports Erika Check Hayden for Nature. “What we’re finding over time is that biology isn’t this kind of mysterious unpredictable substrate; it just felt that way because we didn’t really have the tools to see what was going on,” Prof. Christopher Voigt says.

CBC News

Prof. Feng Zhang has been named a recipient of the 2016 Canada Gairdner International Award for his work on the development of the CRISPR gene-editing system, reports CBC News. CRISPR "may prove to be a ‘powerful therapeutic’ for treating human diseases by editing out harmful genetic mutations.”

Globe and Mail

Globe and Mail reporter Ivan Semeniuk spotlights Prof. Feng Zhang and his role in developing the CRISPR-Cas9 gene-editing system, for which he was honored as a recipient of the 2016 Canada Gairdner International award. “CRISPR genome editing technology is a really powerful platform,” says Zhang. “It think it will advance both our ability to understand disease and to develop treatments.”

BBC News

BBC News reporter Michelle Roberts writes that MIT researchers have fine-tuned the CRISPR-Cas9 genome editing system to make it safer and more accurate. This development is "vital if it [CRISPR] is to be used in humans to cure inherited diseases or inborn errors,” explains Roberts. 

Boston Globe

Kathleen McKenna of The Boston Globe writes that Professor Alexander Rich, whose research confirmed DNA’s double-helix structure, died at 90 on April 27. Shuguang Zhang, associate director of the Center for Biomedical Engineering at MIT, said that Rich was “warm, wonderful, and open-minded.”

The Washington Post

Washington Post reporter Martin Weil writes that Prof. Alexander Rich, who was known for his work with molecular biology, passed away on April 27. Rich’s work on hybridization, the pairing of two single strands of DNA or RNA, “is regarded as integral to creating much of modern biotechnology, with applications in diagnostics, forensics, genealogy and gene sequencing.”

New York Times

Prof. Alexander Rich, a noted biophysicist known for his work investigating the structure of DNA and RNA, died on April 27, writes Denise Gellene for The New York Times. “I can think of no one else who has made as many major contributions to all facets of modern molecular biology,” said University of Maryland Prof. Robert C. Gallo.

Scientific American

Kat McGowan of The Scientific American cites research by Professor Angelica Amon that indicates recent findings may overestimate the amount of genetic variation in healthy human bodies. “Having the wrong chromosome number is not a good thing,” says Amon.