Skip to content ↓

Topic

Defense Advanced Research Projects Agency (DARPA)

Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 100 news clips related to this topic.
Show:

Wired

Researchers from MIT have produced a miniature ultrasound device that sticks to the body, reports Maggie Chen for Wired. “By sticking the patch on different parts of the subject’s body, the researchers could get images of the stomach, muscles, blood vessels, lungs, and heart,” explains Chen.

The Boston Globe

MIT engineers have developed a medical ultrasound system that uses a patch the size of a postage stamp, reports Hiawatha Bray for The Boston Globe. “The new MIT system would allow a doctor or technician to attach a patch directly over the area to be scanned,” explains Bray. “The patch is plugged into a device that captures the ultrasound signal, converts it to a viewable image and records it for future reference.”

TechCrunch

TechCrunch reporter Devin Coldewey spotlights how MIT researchers have developed a machine learning technique for proposing new molecules for drug discovery that ensures suggested molecules can be synthesized in a lab. Coldewey also features how MIT scientists created a new method aimed at teaching robots how to interact with everyday objects.

TechCrunch

CSAIL researchers have developed a new technique that could enable robots to handle squishy objects like pizza dough, reports Brian Heater for TechCrunch.  “The system is separated into a two-step process, in which the robot must first determine the task and then execute it using a tool like a rolling pin,” writes Heater. “The system, DiffSkill, involves teaching robots complex tasks in simulations.”

Popular Science

Popular Science reporter Rahul Rao writes that researchers from MIT and Harvard have whipped up quantum tornadoes, “the latest demonstration of quantum mechanics—the strange code of laws that governs the universe at its finest, subatomic scales.”

Smithsonian Magazine

Researchers from MIT and Harvard have directly observed a quantum tornado, reports Elizabeth Gamillo for Smithsonian. “Scientists observed the tornado-like behavior after trapping and spinning a cloud of one million sodium atoms using lasers and electromagnets at 100 rotations per second,” writes Gamillo.

Popular Science

Popular Science reporter Charlotte Hu writes that MIT researchers have simulated an environment in which socially-aware robots are able to choose whether they want to help or hinder one another, as part of an effort to help improve human-robot interactions. “If you look at the vast majority of what someone says during their day, it has to do with what other [people] want, what they think, getting what that person wants out of another [person],” explains research scientist Andrei Barbu. “And if you want to get to the point where you have a robot inside someone’s home, understanding social interactions is incredibly important.”

TechCrunch

MIT researchers have developed a new machine learning system that can help robots learn to perform certain social interactions, reports Brian Heater for TechCrunch. “Researchers conducted tests in a simulated environment, to develop what they deemed ‘realistic and predictable’ interactions between robots,” writes Heater. “In the simulation, one robot watches another perform a task, attempts to determine the goal and then either attempts to help or hamper it in that task.”

Popular Mechanics

MIT researchers have developed a new atomic clock that can keep time more precisely thanks to the use of entangled atoms, reports Leila Stein for Popular Mechanics. “If all atomic clocks worked the way this one does then their timing, over the entire age of the universe, would be less than 100 milliseconds off,” Stein writes.

CNBC

CNBC reporter Charlie Wood features tProf. Connor Coley's work developing a new system that could be used to help automate molecule manufacturing. “It tries to understand, based on those patterns, what kind of transformations should work for new molecules it’s never seen before,” says Coley.

Science

Writing for Science, Derek Lowe spotlights how MIT researchers are developing a platform that could be used to automate the production of molecules for use in medicine, solar energy and more. “The eventual hope is to unite the software and the hardware in this area,” reports Lowe, “and come up with a system that can produce new compounds with a minimum of human intervention.”

IEEE Spectrum

Prof. Max Shulaker has fabricated the first foundry-built silicon wafer, a monolithic 3D carbon nanotube integrated circuit, reports Samuel K. Moore for IEEE Spectrum. “We’ve completely reinvented how we manufacture this technology,” explains Shulaker, “transforming it from a technology that only worked in our academic labs to a technology that can and is already today working inside a commercial fabrication facility within a U.S. foundry.”

Mashable

In this video, Mashable spotlights how MIT researchers have developed an origami-inspired soft robotic gripper that can grasp a wide variety of objects. 

Fast Company

Fast Company reporter Mark Wilson writes that CSAIL researchers have developed a new soft robotic gripper that is modeled after a Venus flytrap. “Dubbed the Magic Ball, it’s a rubber and plastic structure that can contract around an object like an origami flower,” Wilson explains.

The Verge

CSAIL researchers have developed a new robotic gripper that contains an origami skeleton, enabling the device to open and close like a flower and grasp a variety of delicate and heavy objects, reports James Vincent for The Verge “By combining this foldable skeleton with the soft exterior, we get the best of both worlds,” explains Prof. Daniela Rus, director of CSAIL.