Skip to content ↓

Topic

Defense Advanced Research Projects Agency (DARPA)

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 107 news clips related to this topic.
Show:

Tech Briefs

Research Scientist Mathieu Huot speaks with Tech Briefs reporter Andrew Corselli about his work with GenSQL, a generative AI system for databases that “could help users make predictions, detect anomalies, guess missing values, fix errors, or generate synthetic data with just a few keystrokes.” 

Materials World

Researchers from MIT have developed “sustainable, offshore, hydrodynamic,” artificial reef structures capable of dissipating “more than 95% of an incoming wave’s total energy,” reports Nick Warburton for Materials World. The design “comprises vertical cylinders with four rudder-like slats attached to them, so that water can flow through the structure to generate 'swirling masses of water' or large eddies,” explains Warburton. 

Tech Briefs

MIT scientists are working to fortify coastlines with “architected” reefs that can also provide habitats for fish and marine life, reports Ed Brown for TechBriefs. “We looked at the structure of these reefs and we found some similarities to what we had been doing in fluid mechanics. That led us to the idea of trying to make artificial reefs that we could architect and build in a very directed way,” says Prof. Michael Triantafyllou.

Popular Mechanics

Researchers at CSAIL have created three “libraries of abstraction” – a collection of abstractions within natural language that highlight the importance of everyday words in providing context and better reasoning for large language models, reports Darren Orf for Popular Mechanics. “The researchers focused on household tasks and command-based video games, and developed a language model that proposes abstractions from a dataset,” explains Orf. “When implemented with existing LLM platforms, such as GPT-4, AI actions like ‘placing chilled wine in a cabinet' or ‘craft a bed’ (in the Minecraft sense) saw a big increase in task accuracy at 59 to 89 percent, respectively.”

The Boston Globe

Researchers from MIT and elsewhere have developed an AI model that is capable of identifying 3 ½ times more people who are at high-risk for developing pancreatic cancer than current standards, reports Felice J. Freyer for The Boston Globe. “This work has the potential to enlarge the group of pancreatic cancer patients who can benefit from screening from 10 percent to 35 percent,” explains Freyer. “The group hopes its model will eventually help detect risk of other hard-to-find cancers, like ovarian.”

Tech Briefs

Javier Ramos '12, SM '14, co-founder of InkBit, and his colleagues have developed a, “3D inkjet printer that uses contact-free computer vision feedback to print hybrid objects with a broad range of new functional chemistries,” reports Ed Brown for Tech Briefs. “Our vision for Inkbit is to reshape how the world thinks about production, from design to execution and make our technology readily available,” says Ramos. “The big opportunity with 3D printing is how to disrupt the world of manufacturing — that’s what we're focused on.”

The Daily Beast

Researchers from MIT and elsewhere have developed a new 3D printing process that “allows users to create more elastic materials along with rigid ones using slow-curing polymers,” reports Tony Ho Tran for the Daily Beast. The researchers used the system to create a, “3D printed hand complete with bones, ligaments, and tendons. The new process also utilizes a laser sensor array developed by researchers at MIT that allows the printer to actually ‘see’ what it’s creating as it creates it.”

Boston.com

MIT researchers have developed a new tool called “PhotoGuard” that can help protect images from AI manipulation, reports Ross Cristantiello for Boston.com. The tool “is designed to make real images resistant to advanced models that can generate new images, such as DALL-E and Midjourney,” writes Cristantiello.

CNN

Researchers at MIT have developed “PhotoGuard,” a tool that can be used to protect images from AI manipulation, reports Catherine Thorbecke for CNN. The tool “puts an invisible ‘immunization’ over images that stops AI models from being able to manipulate the picture,” writes Thorbecke.

WHDH 7

Researchers at MIT have created a four-legged robot called DribbleBot, reports Caroline Goggin for WHDH. The robot “can dribble a soccer ball under the same conditions as humans, using onboard sensors to travel across different types of terrain.”

Popular Science

Popular Science reporter Andrew Paul spotlights how researchers from MIT CSAIL have developed a soccer-playing robot, dubbed DribbleBot, that can handle a variety of real-world terrains. “DribbleBot showcases extremely impressive strides in articulation and real-time environmental analysis. Using a combination of onboarding computing and sensing, the team’s four-legged athlete can reportedly handle gravel, grass, sand, snow, and pavement, as well as pick itself up if it falls.”

TechCrunch

MIT researchers have created “Dribblebot,” a four-legged robot capable of playing soccer across varying terrain, reports Brian Heater for TechCrunch.

Boston.com

Researchers at MIT have created a four-legged robot capable of dribbling a soccer ball and running across a variety of terrains, reports Ross Cristantiello for Boston.com. “Researchers hope that they will be able to teach the robot how to lift a ball over a step in the future,” writes Cristantiello. “They will also explore how the technology behind DribbleBot can be applied to other robots, allowing machines to quickly transport a range of objects around outside using legs and arms.”

The Economist

MIT researchers devised a new way to arrange LED pixels to create screens with a much higher resolution than is currently possible, reports The Economist. The new technique, which involves stacking micro LEDS, could also be used to make “VR images that appear far more lifelike than today’s.”

National Geographic

National Geographic reporter Maya Wei-Haas explores how the ancient art of origami is being applied to fields such a robotics, medicine and space exploration. Wei-Haas notes that Prof. Daniela Rus and her team developed a robot that can fold to fit inside a pill capsule, while Prof. Erik Demaine has designed complex, curving fold patterns. “You get these really impressive 3D forms with very simple creasing,” says Demaine.