Skip to content ↓

Topic

Cleaner industry

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 31 news clips related to this topic.
Show:

Axios

Axios reporter Courtenay Brown spotlights a new report by researchers from MIT and the Brookings Institute that finds poorer counties in the U.S. with lower employment rates have, “attracted a large share of the hundreds of billions of dollars allocated for clean energy projects, semiconductor mega-factories and more.” Brian Deese, an Innovation Fellow at MIT, explains that: “Distressed communities are attracting new clean energy and semiconductor investment at roughly twice the rate of traditional private investment. If this trend continues, it has the potential to change the economic geography of the country and create economic opportunity in parts of this country that too many people have written off in the past.”  

Reuters

Reuters reporter Timothy Appell spotlights a new study by researchers from MIT and the Brookings Institution that finds, “a surge of factory building fueled by Biden administration investments in ‘strategic sectors’ such as clean energy and semiconductors has so far flowed disproportionately to U.S. counties with relatively distressed economies and notably has not tracked ‘Democratic geography.’”

Energy Wire

Researchers at MIT have developed a cathode, the negatively-charged part of an EV lithium-ion battery, using “small organic molecules instead of cobalt,” reports Hannah Northey for Energy Wire. The organic material, "would be used in an EV and cycled thousands of times throughout the car’s lifespan, thereby reducing the carbon footprint and avoiding the need to mine for cobalt,” writes Northey. 

Fast Company

Fast Company reporter Adele Peters spotlights how researchers at MIT have combined cement with carbon black to make concrete that can store energy as one of the climate tech innovations that provide hope “that it’s still possible to avoid the worst impacts of climate change.” With this new technology, “the foundation of your future house could eventually store solar power from your roof,” explains Peters.

Newsweek

MIT researchers have developed a supercapacitor comprised of concrete and charcoal, that can store electricity and discharge as needed, reports Aleks Phillips for Newsweek. Researchers hope the device can provide “a cheap and architectural way of saving renewable energy from going to waste,” writes Phillips.

Xinhuanet

Researchers at MIT have developed a conceptual design for a system that can efficiently produce “solar thermochemical hydrogen,” reports Xinhua. “The system harnesses the Sun's heat to directly split water and generate hydrogen -- a clean fuel that can power long-distance trucks, ships, and planes, while in the process emitting no greenhouse gas emissions.”

Associated Press

In an article about how researchers are exploring why ancient Roman and Mayan buildings are still standing, AP reporter Maddie Burakoff highlights how researchers from MIT found that an ancient Roman technique for manufacturing concrete gave the material “self-healing” properties. “We don’t need to make things last quite as long as the Romans did to have an impact,” says Prof. Admir Masic. If we add 50 or 100 years to concrete’s lifespan, “we will require less demolition, less maintenance and less material in the long run.”

TechCrunch

Dan Stack PhD ’20 speaks with TechCrunch reporter Tim De Chant about his startup Electrified Thermal Solutions, which is developing electrified firebricks to help decarbonize building materials.  

The Boston Globe

Researchers at MIT have developed a supercapacitor, an energy storage system, using cement, water and carbon, reports Macie Parker for The Boston Globe. “Energy storage is a global problem,” says Prof. Franz-Josef Ulm. “If we want to curb the environmental footprint, we need to get serious and come up with innovative ideas to reach these goals.”

Newsweek

Sean Hunt MS ’13 PhD ’16 co-founded Solugen, a startup working to develop industrial chemicals with environmentally friendly ingredients, reports David H. Freedman for Newsweek. “The company's goals over the next seven years are to reduce the carbon emissions released by industry into the environment by an amount equivalent to eliminating 2 million cars, and to make enough bioplastic to get rid of 5 billion non-degradable plastic bottles,” writes Freedman.

CNBC

MIT Innovation Fellow Brian Deese speaks with CNBC host Andrew Ross Sorkin about the state of the U.S. economy and the impact of “Bidenomics,” President Joe Biden’s economic philosophy.

The Washington Post

An analysis by the MIT Sloan Sustainability Initiative and Climate Interactive has found that planting a trillion trees would only prevent 0.27 degrees of warming by 2100, reports Maxine Joselow for The Washington Post. “Trees are great. I personally love to be out in the forests as much as I possibly can,” says Prof. John Sterman. “But the reality is very simple: You can plant a trillion trees, and even if they all survived, which wouldn’t happen, it just wouldn’t make that much difference to the climate.”

Fast Company

Fast Company reporter Adele Peters writes that MIT researchers have developed a new type of concrete that can store energy, potentially enabling roads to be transformed into EV chargers and home foundations into sources of energy. “All of a sudden, you have a material which can not only carry load, but it can also store energy,” says Prof. Franz-Josef Ulm.

New Scientist

MIT engineers have uncovered a new way of creating an energy supercapacitor by combining cement, carbon black and water  that could one day be used to power homes or electric vehicles, reports Jeremy Hsu for New Scientist. “The materials are available for everyone all over the place, all over the world,” explains Prof. Franz-Josef Ulm. “Which means we don’t have the same restriction as with batteries.”

Popular Science

MIT researchers have discovered that when combined with water, carbon black and cement can produce a low-cost supercapacitor capable of storing electricity for later use, reports Andrew Paul for Popular Science. “With some further fine-tuning and experimentation, the team believes their enriched cement material could one day compose portions of buildings’ foundations, or even create wireless charging,” writes Paul.