Skip to content ↓

Topic

Chemistry

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 161 news clips related to this topic.
Show:

The Boston Globe

Prof. Desirée Plata and her research team have designed “a kind of clay that mimics the behavior of underwater microorganisms to break down methane into water and carbon dioxide,” reports Ivy Scott for The Boston Globe. “The estimates are that you could save a half a degree of warming by 2100 if you cut human-made methane emissions in half, so that’s a pretty big deal,” says Plata. “It’s the only greenhouse gas that can do that. It’s just a question of whether or not we’ll start to see people doing that ... [regionally] and in Massachusetts.”

Nobel Prize Conversations

Prof. Moungi Bawendi, a recipient of the 2023 Nobel Prize in Chemistry, speaks with Nobel Prize Conversations host Adam Smith about the joys of visualizing quantum mechanics, the inspiration for his Nobel-prize winning work and his love of music. “Being in a place like MIT and being exposed to engineering and other scientific fields and medicine across the river and Harvard Medical School and a lot of startups around here, you really are exposed to so many things that are so interesting and I love that,” says Bawendi. “Those things give me ideas of how to go back to the lab and take different directions.” 

The Boston Globe

Writing for The Boston Globe, Cady Coleman ’83 reflects on her career as an astronaut and Air Force colonel. “I am an astronaut,” writes Coleman. “Even after 24 years at NASA, two space shuttle missions, and six months living aboard the International Space Station, it thrills me to say those words, and yet there is a part of me that’s still surprised by them.”  

Newsweek

MIT researchers have created an amber-like material that preserves DNA so it can store data, improving on current methods that use particles of silica or require freezing, reports Pandora Dewan for Newsweek. The team “demonstrated their material by embedding and subsequently removing a DNA sequence encoding the music for the Jurassic Park theme song,” Dewan explains. “Following this process, they sequenced the molecule and confirmed that no errors had been introduced into the DNA sequence.”

The Guardian

Prof. Susan Solomon speaks with Guardian reporter Killian Fox about her new book “Solvable: How We Healed the Earth, and How We Can Do It Again,” and her research addressing climate change. “For goodness sake, let’s not give up now, we’re right on the cusp of success,” says Solomon. “That’s the fundamental message of the book.” 

Times Higher Education

Prof. Susan Solomon speaks with Times Higher Education reporter Matthew Reisz about her work “researching, teaching and communicating climate science while also leading seemingly endless international environmental negotiations.” Solomon recently published a new book, “Solvable: How We Healed the Earth, and How We Can Do It Again,” in which she outlines her “hope for the planet.” Says Solomon: “We are in a world bursting with change. So it’s a perfect time to be a climate scientist and study all those things.”

WGBH

Prof. Anna Frebel joins Arun Rath of WGBH’s All Things Considered to discuss her recent discovery of some of the universe’s oldest stars, an out-of-this-world identification made the help of MIT undergraduates Hillary Andales, Ananda Santos and Casey Fienberg. “When you meet someone new, you want to know what their name is, how old they are, maybe where they live and what they do, right?” says Frebel. “We do the same with all the astronomical objects in the sky.” 

The Boston Globe

With the help of undergraduates in MIT’s Observational Stellar Archaeology 8.S30 class, researchers at MIT found three of the oldest stars in the universe orbiting around the outskirts of the Milky Way Galaxy, reports Ava Berger for The Boston Globe. “[The stars] have preserved all this information from early on for 13 billion years for us because they’re just sitting there,” explains Prof. Anna Frebel. “Like the can of beans in the back of your cupboard, unless you crack it open or damage it somehow it just keeps sitting there.”

Mashable

Researchers at MIT have discovered “three of the oldest stars in the universe lurking right outside the Milky Way,” reports Elisha Sauers for Mashable. “These little stars are nearly 13 billion years old, and they haven't changed one bit since," says Prof. Anna Frebel. "The stars will continue to exist for about another 3 to 5 billion years or so."

Newsweek

MIT researchers have discovered three of the oldest stars in our universe among the stars that surround “the distant edge of our Milky Way galaxy,” reports Jess Thomson for Newsweek. “These stars, dubbed SASS (Small Accreted Stellar System stars), are suspected to have been born when the very first galaxies in the universe were forming, with each belonging to its own small primordial galaxy,” explains Thompson. 

Gizmodo

Prof. Anna Frebel and her colleagues have identified some of the oldest stars in our universe, located in the Milky Way’s halo, a discovery that stemmed from Frebel’s new course, 8.S30 (Observational Stellar Archaeology), reports Isaac Schultz for Gizmodo. “Studying the ancient stars won’t only help explain the timeline of stellar evolution, but also how our galaxy actually formed,” Schultz explains.

Space.com

MIT researchers have “discovered hitherto unknown space molecule while investigating a relatively nearby region of intense star birth,” reports Robert Lea for Space.com. This discovery “revealed the presence of a complex molecule known as 2-methoxyethanol, which had never been seen before in the natural world, though its properties had been simulated in labs on Earth,” writes Lea.

Energy Wire

Researchers at MIT have developed a cathode, the negatively-charged part of an EV lithium-ion battery, using “small organic molecules instead of cobalt,” reports Hannah Northey for Energy Wire. The organic material, "would be used in an EV and cycled thousands of times throughout the car’s lifespan, thereby reducing the carbon footprint and avoiding the need to mine for cobalt,” writes Northey. 

Nature

Nature reporter Neil Savage speaks with former members of Prof. Moungi Bawendi’s research group about their work with Bawendi on synthesizing quantum dots. Manoj Nirmal PhD '96 recalls how, “what I was really intrigued and fascinated by was, it was very different than anything else that was happening in the [chemistry] department.” Christopher Murray PhD '95 rejoiced in the Nobel Prize announcement, saying, “It’s extremely exciting to see that what [Moungi] built is recognized as part of the Nobel prize.”

CBC News

Prof. Moungi Bawendi, recipient of the 2023 Nobel Prize in Chemistry, speaks with CBC Quirks & Quacks host Bob McDonald about his work in quantum dots and nanotechnology. “I really want to stress that the beginning of this field, we were interested in this because it was a brand new material, it was a size region that no one had investigated before,” says Bawendi. “This was before people talked about nanoscience and nanotechnology, we were just very curious how the properties evolved from the molecular properties… to the bulk properties.”