Skip to content ↓

Topic

Chemical engineering

Download RSS feed: News Articles / In the Media

Displaying 1 - 15 of 203 news clips related to this topic.
Show:

Inside Higher Ed

Institute Professor Paula Hammond, head of MIT’s Department of Chemical Engineering, has been selected to serve on the President's Council of Advisors on Science and Technology, “a group of external advisers tasked with making science, technology and innovation policy recommendations to the White House and the president,” reports Alexis Gravely for Inside Higher Ed. Professors Maria Zuber, MIT vice president for research, and Eric Lander, the president’s science adviser and director of the White House Office of Science and Technology Policy, are two of the co-chairs for the council.

USA Today

MIT researchers are developing plants that can glow in the dark and provide light all night, reports USA Today. “The high-tech plants are embedded with nanoparticles that absorb light during the day or from other light sources like LEDs. After the lights go out, they slowly release that stored energy as luminescence over time.”

The Wall Street Journal

In an article for The Wall Street Journal about efforts to help repair or prevent cartilage damage before osteoarthritis sets in, Laura Landro spotlights how MIT researchers are developing “ways to get drugs into the cartilage tissue and keep them there. They are using microscopic particles called nanocarriers to deliver IGF-1, an insulin like growth factor, to the tight mesh that holds cartilage in joints.”

National Geographic

National Geographic reporter Roxanne Khamsi spotlights how Prof. Richard Braatz is working on developing continuous manufacturing processes that could help boost global vaccine availability. Khamsi notes that one feature Braatz and his colleagues are testing is using “a filter that attaches to the side of their production tanks to continuously extract vaccine material, rather than harvesting it in bulk.”

United Press International (UPI)

UPI reporter Brian Dunleavy writes that MIT researchers have developed a new way to potentially expand sources of biofuel to include straw and woody plants. "Our goal is to extend this technology to other organisms that are better suited for the production of these heavy fuels, like oils, diesel and jet fuel," explains Prof. Gregory Stephanopoulos.

TopUniversities.com

Provost Marty Schmidt speaks with TopUniversities.com reporter Chloe Lane about how MIT has maintained its position as the top university in the world on the QS World University Rankings for 10 consecutive years. “I am honored to have been a part of the MIT community for almost 40 years,” says Schmidt. “It’s a truly interdisciplinary, collaborative, thought-provoking place that encourages experimentation and pushes you to expand your mind. I think it’s a wonderful place to call home.”

The Washington Post

Professor Martin Bazant and Professor John Bush have developed a new safety guideline to limit the risk of airborne Covid-19 transmission in different indoor settings. “For airborne transmission, social distancing in indoor spaces is not enough, and may provide a false sense of security,” says Bazant. “Efficient mask use is the most effective safety measure, followed by room ventilation, then filtration,” adds Bush.

CNN

CNN reporter Maggie Fox writes that MIT researchers have developed a new formula for calculating the risk of airborne Covid-19 transmission in indoor settings. "To minimize risk of infection, one should avoid spending extended periods in highly populated areas. One is safer in rooms with large volume and high ventilation rates," write Profs. Martin Bazant and John Bush.
 

WHDH 7

7 News reporter Byron Barnett spotlights how MIT researchers are developing new face masks aimed at stopping the spread of Covid-19. Prof. Giovanni Traverso is creating reusable masks with pop-put disposable filters, and Prof. Michael Strano is developing a mask that could “destroy the virus, using a nine-volt battery to heat the mask and kill the virus before the wearer breathes it in.”

C&EN

Prof. Kristala L. J. Prather speaks with Korie Grayson of C&EN about her career path and her work harnessing the synthetic power of microbial systems. Of the importance of mentorship, Prather notes, “The exponential way in which you can actually have a positive impact is by taking good care of the people who are placed into your academic and intellectual trust. That’s how we make a difference.”

C&EN

In an article for C&EN, Marsha-Ann Watson explores what inspired Prof. Paula Hammond, head of MIT’s Department of Chemical Engineering, to pursue a career in engineering, how her research at MIT has evolved to focus on biomedical applications and the importance of inclusivity and diversity. Hammond recalls how her first female science teacher inspired her love of chemistry: “I learned that I loved chemistry and that I could actually use that interest to perhaps create things,” she explains.

Axios

Axios reporter Bryan Walsh spotlights how MIT researchers have developed a new way for chemical signals in spinach leaves to transmit emails. “The system could help provide an early warning system for explosives or pollution, but really, we just want to know what the spinach are thinking,” writes Walsh.

Fast Company

Fast Company reporter Adele Peters spotlights Prof. Michael Strano’s work exploring how to embed nanoparticles into plant leaves, as part of an effort to see if they could serve as sensors. “We started asking the question, can we make living plants to do some of the functions that humans do by stamping things out of plastic and circuit boards—things that go into landfills?” says Strano.

Guardian

MIT researchers have developed a way to embed spinach leaves with sensors, which would allow them to serve as sensors that could monitor groundwater for contaminates, reports The Guardian. “Plants are very environmentally responsive,” explains Prof. Michael Strano. “If we tap into those chemical signaling pathways, there is a wealth of information to access.”

Newsweek

MIT researchers have developed a model that could help people estimate the risks of contracting Covid-19 in different scenarios, reports Emily Czachor for Newsweek. The tool “provides calculations which estimate how many people can remain within an enclosed space, and for how long, before they are theoretically exposed to the virus.”