Skip to content ↓

Topic

Broad Institute

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 133 news clips related to this topic.
Show:

Boston Herald

Researchers from MIT and elsewhere are investigating the “pathways, risk factors, and molecules” involved in the development of colorectal cancer, reports Rick Sobey for The Boston Herald. “The research team has uncovered contributing causes to this rise in early-onset cases, including: overweight/obesity, physical inactivity, poor diet, and alterations in the gut microbiome,” writes Sobey.

Boston.com

Prof. Feng Zhang has been named to STAT’s 2024 STATUS List, which highlights the leaders shaping the future of health and life sciences, reports Dialynn Dwyer for Boston.com. “Among the companies he’s co-founded is Editas Medicine, which as of late 2023 was now the official holder of patent rights to the CRISPR-Cas9 gene editing tool used in the sickle cell therapy Casgevy, and Aera Therapeutics, which in February 2023 raised $193 million in venture funding to develop protein nanoparticles as a way of delivering gene editing,” Dwyer writes.

The Boston Globe

Omar Abudayyeh '12, PhD '18 and Jonathan Gootenberg '13 speak with Robert Weisman at The Boston Globe about their deep-rooted working relationship, which began as undergraduates at MIT and has gone on to include joint appointments at the McGovern and Broad Institutes and multiple startups. “Science is difficult, and it’s great to have someone to do it with,” said Gootenberg. “You got to work with people you enjoy hanging out with.”
 

STAT

Prof. Jonathan Weissman and his colleagues have developed a new tool for monitoring changes in human blood cells, which could one day help researchers predict disease risk, reports Megan Molteni for STAT. “The technology paves the way for a day in the not too distant future where it is conceivable that from a simple blood draw, a doctor could get a sense of what’s going on in that patient’s bone marrow,” writes Molteni, “picking up perturbations there that could help predict a diverse range of diseases.”

Fierce Biotech

In a new paper, MIT researchers detail how they have used AI techniques to discover a class of “of antibiotics capable of killing methicillin-resistant Staphylococcus aureus (MRSA),” reports Helen Floresh for Fierce Biotech. “This paper announces the first AI-driven discovery of a new class of small molecule antibiotics capable of addressing antibiotic resistance, and one of the few to have been discovered overall in the past 60 years,” says postdoctoral fellow Felix Wong.

New Scientist

Researchers at MIT have used artificial intelligence to uncover, “a new class of antibiotics that can treat infections caused by drug-resistant bacteria,” reports Jeremy Hsu for New Scientist. “Our [AI] models tell us not only which compounds have selective antibiotic activity, but also why, in terms of their chemical structure,” says postdoctoral fellow Felix Wong.

Nature

MIT researchers have “used an algorithm to sort through millions of genomes to find new, rare types of CRISPR systems that could eventually be adapted into genome-editing tools,” writes Sara Reardon for Nature. “We are just amazed at the diversity of CRISPR systems,” says Prof. Feng Zhang. “Doing this analysis kind of allows us to kill two birds with one stone: both study biology and also potentially find useful things.”

Nature

Researchers at MIT and elsewhere have identified key cell types that may protect the brain against Alzheimer’s symptoms, reports Sara Reardon for Nature. “Most Alzheimer’s research has focused on excitatory neurons, which relay electrical signals to activate other neurons,” explains Reardon. “But the authors found that the cells with reelin or somatostatin were inhibitory neurons, which halt neuronal communication. These inhibitory cells might therefore have a previously unknown role in the types of cognitive function that are lost during Alzheimer’s.”

The Boston Globe

Boston Globe reporter Aaron Pressman speaks with alumnus Jeremy Wertheimer, co-founder of ITA Software, about the state of AI innovation in the Greater Boston area, reports Aaron Pressman for The Boston Globe. “Back in the day, we called it good old-fashioned AI,” says Wertheimer. “But the future is to forget all that clever coding. You want to have an incredibly simple program with enough data and enough computing power.”

ABC News

Researchers from MIT and Massachusetts General Hospital have developed “Sybil,” an AI tool that can detect the risk of a patient developing lung cancer within six years, reports Mary Kekatos for ABC News. “Sybil was trained on low-dose chest computer tomography scans, which is recommended for those between ages 50 and 80 who either have a significant history of smoking or currently smoke,” explains Kekatos.

WCVB

Prof. Regina Barzilay speaks with Nicole Estephan of WCVB-TV’s Chronicle about her work developing new AI systems that could be used to help diagnose breast and lung cancer before the cancers are detectable to the human eye.

Salon

A study by researchers from the Broad Institute and others have found that cancer in humans and dogs share genomic similarities, reports Nicole Karlis for Salon. “Specifically, the study identified 18 genetic mutations that are likely a primary driver of the cancer in canine patients, eight of which overlapped with so-called "hotspots" in human cancers,” writes Karlis.

Science

MIT researchers have discovered an RNA-guided DNA-cutting enzyme in eukaryotes, reports Science. “The researchers speculate that eukaryotic cells may have gained the newly identified editing genes from transposable elements—so-called jumping genes—they received from bacteria,” writes Science.

Popular Science

MIT researchers have identified a new biological editing system that could “potentially be even more precise than CRISPR gene editing,” reports Laura Baisas for Popular Science. The new system, based on a protein called Fanzor, is “the first programmable RNA-guided system discovered in eukaryotes,” Baisas notes.