Skip to content ↓

Topic

Black holes

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 218 news clips related to this topic.
Show:

CBC News

Prof. Nergis Mavalvala, dean of the MIT School of Science, joins Bob McDonald of CBC’s “Quirks & Quarks” to discuss how 10 years after LIGO’s first detection of gravitational waves the observatories are still “helping scientists better understand the life cycles of stars, the nature of gravity, and transforming the way we explore the farthest reaches of space.” Mavalvala shares: "Scientists have been able to design and construct these instruments that are capable of measuring imperceptibly small changes in spacetime distance, and in the past 10 years the sensitivity of these instruments has improved. That’s what is allowing us to make greater discoveries.” 

New York Times

Writing for The New York Times, Dennis Overbye celebrates the 10-year anniversary of LIGO’s first direct detection of gravitational waves, underscoring how LIGO has advanced our understanding of the universe’s cosmic history. The first detection was a discovery that “changed astrophysics, opening a window onto previously inaccessible realms of nature in which space could rip, bend, puff up, crumple and even vanish,” writes Overbye. The late Prof. Emeritus Rainer Weiss, who dreamed up the idea for LIGO, said of LIGO’s first detection in September 2015: “It was waving hello. It was amazing. The signal was so big, I didn’t believe it.”

Nature

Writing for Nature, Bruce Allen pays tribute to Prof. Emeritus Rainer Weiss, a pioneering physicist who “spearheaded the construction of the LIGO observatory to detect Einstein’s predicted ripples in space-time [and] leaves a legacy of persistence and mentorship.” Allen recalls how, decades earlier, Weiss rejoiced in a moment of discovery with him. “This is why we do science,” Weiss said. “Not for prizes or awards — that’s all nonsense. It’s for the satisfaction when something you’ve struggled with finally works.” Weiss, Allen emphasizes, was “a scientist driven by curiosity, persistence and the joy of understanding how the Universe works.”

The Wall Street Journal

Wall Street Journal reporter Jon Mooallem memorializes the life and work of Prof. Emeritus Rainer Weiss, from his time hacking surplus military electronics into sophisticated hi-fi receivers as a teenager to dreaming up the concept for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Mooallem notes that Weiss and his LIGO colleagues’ breakthrough in achieving the first-ever detection of gravitational waves “has provided a new way of looking at the universe, of observing, through the charting of gravity waves emitted by moving objects, what was previously unobservable or unknown—a milestone that is frequently compared with Galileo’s invention of the telescope.”

The Boston Globe

Prof. Rainer Weiss, a Nobel Prize-winning physicist whose research helped “unlock the secrets of the universe,” has died at 92, reports Bryan Marquard for The Boston Globe. “He really is, by a large margin, the most influential person this field has seen. And will see,” said Caltech Prof. Emeritus Kip Thorne. Nergis Mavalvala, dean of the MIT School of Science who conducted her doctoral research with Weiss, shared that Weiss “worked on three different things, and every one of them has changed the way we understand physics and the universe.”

Space.com

Prof. Emeritus Rainer Weiss, a “renowned experimental physicist” who was “integral in confirming the existence of tiny ripples in spacetime called ‘gravitational waves,’” has died, reports Robert Lea for Space.com. “Remarkably, in confirming the existence of gravitational waves, Weiss both proved Einstein right and wrong at the same time,” writes Lea. “Einstein had been convinced that these ripples in spacetime were so faint that no apparatus on Earth could ever be sensitive enough to detect them, showing just how revolutionary LIGO was.”

Tri-City Herald

Tri-City Herald reporter Annette Cary memorializes the life and legacy of MIT Prof. Emeritus Rainer Weiss, a “renowned experimental physicist and Nobel laureate,” who was “key to [the] world’s first gravitational wave discovery.” At the opening ceremony in June 2022 for the LIGO Exploration Center in Hanford, Washington, Weiss relayed how life is more interesting if you have a deeper understanding of the world around you and “how science does its tricks.”

Physics World

Physics World reporter Michael Banks chronicles the life and work of MIT Prof. Emeritus and gravitational wave pioneer Rainer Weiss. “Weiss came up with the idea of detecting gravitational waves by measuring changes in distance as tiny as 10–18 m via an interferometer several kilometers long,” writes Banks. “His proposal eventually led to the formation of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO), which first detected such waves in 2015.” 

CBS

Graduate student Megan Masterson speaks with CBS Eye on the World hosts John Batchelor and David Livingston about her research on tidal disruption events. “These events were first theorized in the 1970s, first discovered in the 1990s with x-ray wavelengths,” explains Masterson. “But today, what James Webb is doing is allowing us to detect these events in the infrared band. And so, what we’re seeing here are previously dormant black holes that were kind of lying at the center for their galaxies doing pretty much nothing suddenly become active.” 

Scientific American

Ten years after scientists detected gravitational waves for the first time using the LIGO detectors, Rachel Feltman of Scientific American's “Science Quickly” podcast visits the MIT LIGO Lab to speak with Prof. Matt Evans about the future of gravitational wave research and why Cosmic Explorer, the next generation gravitational wave observatory, will help unearth secrets of the early universe. “We get to look back towards the beginning of the universe, in some sense, with gravitational waves as we look at these sources that are farther and farther away,” says Evans. “With Cosmic Explorer we’ll have not just one or two but hundreds of thousands of sources from the distant universe. So it’s a really exciting way to explore the universe as a whole by looking at this stellar graveyard.”

Newsweek

Astronomers from MIT and other institutions have discovered a “supermassive black hole that appears to be ‘waking up’ after being inactive for decades,” reports Soo Kim for Newsweek. “The black hole at the heart of SDSS1335+0728—a distant galaxy 300 million light-years away—was found to have produced flashes of light known as quasi-periodic eruptions (QPEs),” Kim explains, adding that the “the bursts of X-rays from Ansky were found to be 10 times longer and 10 times more luminous than what we see from a typical QPE.” 

Popular Science

Popular Science reporter Andrew Paul writes that a team of astronomers, including MIT scientists, has been studying a black hole dubbed Ansky that is in the process of waking up. Paul notes that what the researchers have documented "challenges prevailing theories about black hole lifecycles.” Graduate student Joheen Chakraborty explains: “The bursts of X-rays from Ansky are ten times longer and ten times more luminous than what we see from a typical QPE. Each of these eruptions is releasing a hundred times more energy than we have seen elsewhere. Ansky’s eruptions also show the longest cadence ever observed, of about 4.5 days.”

USA Today

USA Today reporter Eric Lagatta writes that a new study by MIT researchers finds that X-ray flashes emanating from a supermassive black hole located 270 million light-years from the Milky Way could be caused by a dead stellar remnant, or white dwarf. The researchers believe that the white dwarf could be “spinning precariously on the edge of the black hole, causing the explosions of high-energy light.” 

Reuters

MIT astronomers have detected X-ray flashes erupting from a supermassive black hole that seem to be caused by a nearby white dwarf, reports Will Dunham for Reuters. “It is probably the closest object we've ever observed orbiting around a supermassive black hole,” says graduate student Megan Masterson. “This is extremely close to the black hole's event horizon.”

Mashable

MIT astronomers have witnessed flashes of X-rays shooting out of a black hole and believe that a dead star, or white dwarf, passing close by the black hole could be causing the eruptions, reports Mark Kaufman for Mashable. “The astronomers ran simulations of what could drive these unusual bursts of energy,” writes Kaufman. “The most plausible outcome is this brazen white dwarf (the spent core of a sun-like star), which is about one-tenth the mass of our sun. It's shedding its dense, outer layer and triggering these pulses of X-rays.”