NBC
Dr. Akshay Syal, a medical fellow for NBC News, discusses how MIT researchers have developed a new technique to 3D print custom replicas of the human heart.
Dr. Akshay Syal, a medical fellow for NBC News, discusses how MIT researchers have developed a new technique to 3D print custom replicas of the human heart.
Bloomberg reporter Tanaz Meghjani writes that MIT researchers created a new system to 3D print a customized replica of the human heart, which could help improve replacement valve procedures. The new system “mimics blood flow and pressure in individual diseased hearts, suggesting a way to predict the effects of various replacements and select the best fit, avoiding potential leakage and failure,” Meghjani writes.
MIT engineers have developed a new technique for 3D printing a soft, flexible, custom-designed replica of a patient’s heart, report Gabrielle Emanuel and Amy Sokolow for WBUR. The goal of the research is to “provide realistic models so that doctors, researchers and medical device manufacturers can use them in testing therapies for different types of heart disease,” Emanuel and Sokolow explain.
Researchers at MIT have created a knit textile containing pressure sensors called 3DKnITS which can be used to predict a person’s movements, reports Charlotte Hu for Popular Science. “Smart textiles that can sense how users are moving could be useful in healthcare, for example, for monitoring gait or movement after an injury,” writes Hu.
Forbes contributor Bruce Y. Lee writes that MIT researchers have found that lack of sleep can affect a person’s gait and that catching up on sleep can improve gait control for those who are chronically sleep deprived. Lee writes that the findings demonstrate how, “lack of sleep may affect your ability to move your body and navigate in subtle ways.”
Mashable spotlights how MIT’s baseball pitching coach is using motion capture technology to help analyze and teach pitching techniques. Using the technology, Coach Todd Carroll can “suggest real-time adjustments as a player is pitching so that just one session using the technology improves their game.”
Lauren Said-Moorhouse reports for CNN that Prof. Sangbae Kim and his colleagues have developed a new algorithm that allows their robotic cheetah to independently leap over objects. "You have to manage balance and energy, and be able to handle impact after landing,” says Kim. “Our robot is specifically designed for those highly dynamic behaviors."
In this video, Monika Auger of The Wall Street Journal describes how MIT engineers have developed a robotic cheetah that can jump over obstacles autonomously. Auger explains that the robot’s vision and path planning systems give it "complete autonomous control over its movements.”
Neel Patel writes for Wired about how MIT researchers have trained their robotic cheetah to detect and leap over obstacles. The robot “estimates the height, size, and distance of objects in its path, and adjusts its approach to prepare a jump and safe landing—all without slowing down.”
Writing for The Washington Post, Rachel Feltman describes how the MIT robotic cheetah can jump over obstacles up to 18 inches tall. “The robot uses an algorithm to gauge the height and distance of upcoming obstacles, so it can clear them without breaking its (record-breaking) stride,” Feltman explains.
Victor Luckerson writes for TIME about the robotic cheetah created by a team of MIT researchers that can “autonomously leap tall obstacles in a single bound.” Luckerson explains that, “the cheetah can clear hurdles as high as 18 in. (46 cm) at an average running speed of 5 m.p.h. (8 km/h).”
Newsweek reporter Felicity Capon writes about the robotic cheetah developed by MIT researchers that can jump over hurdles autonomously. The cheetah uses an onboard mapping system to detect obstacles and estimate their height and distance.
MIT researchers have developed a robotic cheetah that can jump over obstacles while running, reports Sandrine Ceurstemont for New Scientist. “The robot spots obstacles in its path with its built-in lidar system, which can build up a picture of the object in its way from reflected laser light,” explains Ceurstemont.
MIT researchers have trained a cheetah robot they developed to make “flying leaps” over obstacles, reports Devin Coldewey for NBC News. The researchers behind the robotic cheetah aim to “build a ‘high-speed locomotion platform’ with the fastest land animal as its inspiration.”
The robotic cheetah developed by MIT researchers can now autonomously jump over obstacles, reports Nitya Rajan for The Huffington Post. “This is the first time a four-legged robot has used laser sensors to gauges the distance and height of obstacles in its way to plan its jump,” writes Rajan.