Skip to content ↓

Topic

Biological engineering

Download RSS feed: News Articles / In the Media / Audio

Displaying 31 - 45 of 322 news clips related to this topic.
Show:

Science

MIT researchers have discovered an RNA-guided DNA-cutting enzyme in eukaryotes, reports Science. “The researchers speculate that eukaryotic cells may have gained the newly identified editing genes from transposable elements—so-called jumping genes—they received from bacteria,” writes Science.

Popular Science

MIT researchers have identified a new biological editing system that could “potentially be even more precise than CRISPR gene editing,” reports Laura Baisas for Popular Science. The new system, based on a protein called Fanzor, is “the first programmable RNA-guided system discovered in eukaryotes,” Baisas notes.

USA Today

Researchers from MIT and McMaster University have used artificial intelligence to identify a new antibiotic that can fight against a drug-resistant bacteria commonly found in hospitals and medical offices, reports Ken Alltucker for USA Today. The researchers believe the AI “process used to winnow thousands of potential drugs to identify one that may work is an approach that can work in drug discovery,” writes Alltucker.

The World

Researchers from MIT and elsewhere have used artificial intelligence to develop a new antibiotic to address Acinetobacter baumannii, a bacteria known for infecting wounds, lungs and kidneys, reports Harland-Dunaway for The World.

CNN

Using a machine-learning algorithm, researchers from MIT and McMaster University have discovered a new type of antibiotic that works against a type of drug-resistant bacteria, reports Brenda Goodman for CNN. Goodman notes that the compound “worked in a way that stymied only the problem pathogen. It didn’t seem to kill the many other species of beneficial bacteria that live in the gut or on the skin, making it a rare narrowly targeted agent.”

The Guardian

Researchers from MIT and McMaster University used a machine-learning algorithm to identify a new antibiotic that can treat a bacteria that causes deadly infections, reports Maya Yang for The Guardian. The researchers used an “AI algorithm to screen thousands of antibacterial molecules in an attempt to predict new structural classes. As a result of the AI screening, researchers were able to identify a new antibacterial compound which they named abaucin,” writes Yang.

Newsweek

Prof. Jongyoon Han and research scientist Junghyo Yoon have developed a new portable desalination device that can deliver safe drinking water at the push of a button, reports Meghan Gunn and Kerri Anne Renzulli for Newsweek. The device “requires less power than a cell phone charger to run and produces clean drinking water that exceeds World Health Organization standards,” writes Gunn and Renzulli.

The Boston Globe

Ginkgo Bioworks, a biotech company founded by Jason Kelly BS ’03, PhD ’08, Reshma Shetty PhD ‘08, Barry Canton PhD ’08, Austin Che PhD ’08 and Professor Tom Knight, is working to develop synthetic fragrances, reports Scott Kirsner for The Boston Globe.

CNN

Callie Gade and Nate Bonham of CNN’s Discovery Daily Podcast spotlight how researchers from MIT developed a 3D printed replica of the human heart that can help doctors customize treatments for patients before conducting open heart surgery or other intrusive procedures. “These more patient-specific heart replicas can help future researchers develop and identify treatments for people with unique health problems,” says Gade.

New Scientist

Researchers at the McGovern and Broad Institutes have developed a bacterial "nanosyringe" that can inject large proteins into specific cells in the body, which could lead to safer and more effective treatments for a variety of conditions, including cancer, reports Michael Le Page for New Scientist. “The fact that this can load a diversity of different payloads of different sizes makes it unique amongst protein delivery devices,” says graduate student Joseph Kreitz.

Scientific American

Ingrid Wickelgren at Scientific American highlights a new study from researchers at the McGovern and Broad Institutes, in which they used a bacterial ‘nanosyringe’ to inject large proteins into human cells. “The syringe technology also holds promise for treating cancer because it can be engineered to attach to receptors on certain cancer cells,” writes Wickelgren.     

IEEE Pulse

IEEE Pulse reporter Leslie Mertz spotlights Prof. Ed Boyden’s work on refining expansion microscopy. “My hope for expansion, looking 5 or 10 years out, is that it could help produce a map of molecules that is detailed enough to help us understand life itself,” says Boyden.

NBC

Dr. Akshay Syal, a medical fellow for NBC News, discusses how MIT researchers have developed a new technique to 3D print custom replicas of the human heart.

Boston.com

Using an artificial intelligence system, researchers at MIT and elsewhere have developed a new Covid-19 vaccine that could be effective against current and future strains, reports Gwen Egan for Boston.com. “The vaccine differs from others currently on the market due to the portion of the virus being targeted,” writes Egan.  

The Boston Globe

Boston Globe reporter Hiawatha Bray writes that MIT researchers have used an AI system to identify a potential new Covid-19 vaccine that may be effective against both current and future variants of the virus. “The new vaccine targets a portion of the COVID virus that is much less prone to evolve,” writes Bray. “That could potentially make it effective against many different versions of the virus, eliminating the need for routine booster shots.”