Skip to content ↓

Topic

Biological engineering

Download RSS feed: News Articles / In the Media / Audio

Displaying 256 - 270 of 339 news clips related to this topic.
Show:

Boston Globe

MIT researchers have developed a new way to record the activities of human cells, reports Kevin Hartnett for The Boston Globe. “Most of the studies we do to understand diseases like cancer and Alzheimer’s involve studying cells in a dish. We’re interested in understanding how cells function in their natural environments,” explains Prof. Timothy Lu. 

Boston Herald

Boston Herald reporter Lindsay Kalter writes that MIT researchers have developed a technique to record the history of human cells. “Much of our understanding of cancer is not reflective of what’s going on inside the patient,” explains Prof. Timothy Lu. “It’s only with tools like ours you can start testing those hypotheses.”

Reuters

MIT researchers have developed a portable system that could produce biotech drugs on demand, reports Lisa Rapaport for Reuters. “The table-top machine has the potential to one day produce proteins to treat any number of a wide range of conditions like cancer, diabetes, heart attacks, and hemophilia,” writes Rapaport. 

Boston Magazine

A portable device developed by MIT researchers uses programmable yeast to create drugs on demand, reports Jamie Ducharme for Boston Magazine. The device “could be a lifesaver for doctors working in vulnerable conditions, such as the battlefield, a remote village, or even an ambulance,” writes Ducharme. 

Popular Science

Popular Science reporter Samantha Cole writes that MIT researchers have developed a laptop-sized, portable device that can produce biopharmaceuticals for doctors in remote locations. Cole explains that the device can “produce a single dose of treatment with a series of steps, using genetically engineered yeast cells as a mini 'factory' for a variety of customizable drugs.”

Boston Herald

Boston Herald reporter Lindsay Kalter writes that MIT researchers have developed a portable pharmacy that can manufacture biopharmaceuticals and modify treatments. “Instead of relying on a cocktail that already exists, you can reprogram the reactor on demand to customize the treatment,” says Prof. Timothy Lu. 

Wired

Prof. Linda Griffith speaks with Wired reporter Sarah Zhang about her work developing chips that can mimic human organs in an effort to better understand interactions between the immune system and the liver. Griffith is currently working to connect at least 10 miniature organs on a chip to study, for example, how breast cancer can spread to the liver.

New York Times

MIT researchers have discovered that a bacterium found in the human mouth can be used to form a new CRISPR gene-editing system that can target RNA, reports Carl Zimmer for The New York Times. The development “may open up a new front in gene engineering, gaining the ability to precisely adjust the proteins in cells, for instance, or to target cancer cells." 

New Scientist

New Scientist reporter Colin Barras writes that MIT researchers have found they can program C2c2, an enzyme found in bacteria, to serve as an RNA-editing tool. Barras writes that the tool “promises to transform our understanding of RNA’s role in our growth and development, and provide a new avenue for treating infectious diseases and cancer.”

New Scientist

Michael Le Page writes for New Scientist that MIT researchers have developed a technique that allows cells to log their activities using the CRISPR gene-editing system. Le Page explains that “such CRISPR-based logging could have a huge range of uses, from smart cells that monitor our health from within, to helping us understand exactly how our bodies develop.”

HuffPost

In an article for The Huffington Post, Susan Blumenthal highlights how researchers from MIT have developed a paper-based test for diagnosing the Zika virus. Blumenthal writes that “the test consists of a paper covered with yellow dots that turns purple in the presence of the RNA of the virus.”

HuffPost

Huffington Post reporter Carolyn Gregoire writes that MIT spinoff Synlogic is working on reprogramming gut bacteria to act as a living therapeutic. “It’s become really clear that the bacteria living in us and on us affect our bodies in a variety of different ways — in ways that we never imagined,” explains Prof. Timothy Lu. 

New Scientist

MIT researchers have developed a programming language that allows users to design DNA circuits for living cells, writes Andy Coghlan for New Scientist. “We take the same approach as for designing an electronic chip,” says Prof. Christopher Voigt. “Every step in the process is the same – it’s just that instead of mapping the circuit to silicon, it’s mapped to DNA.”

Scientific American

Christopher Intagliata reports for Scientific American about the programming language Prof. Christopher Voigt’s team developed for living cells. Intagliata explains that, “the researchers used the platform to design 60 genetic circuits, which they then ran inside E. coli bacteria. Many of these DNA-based circuits allow bacteria to sense environmental data…and respond in various ways.”

Nature

MIT researchers have developed a programming language for living cells, reports Erika Check Hayden for Nature. “What we’re finding over time is that biology isn’t this kind of mysterious unpredictable substrate; it just felt that way because we didn’t really have the tools to see what was going on,” Prof. Christopher Voigt says.