Forbes
Forbes contributor Angelica Krystle Donati highlights a recent presentation by Prof. Robert Langer, in which he shared his experience founding more than 40 startups.
Forbes contributor Angelica Krystle Donati highlights a recent presentation by Prof. Robert Langer, in which he shared his experience founding more than 40 startups.
MIT researchers have developed a new app called Perdix that allows users to create 2-D nanostructures using DNA strands, reports Jesus Diaz for Fast Company. Engineers could use Perdix to print nanoscale parts for applications in cell biology, photonics, quantum sensing and computing, Diaz explains.
Forbes contributor David DiSalvo highlights Prof. Alan Jasanoff’s book, “The Biological Mind: How Brain, Body and Environment Collaborate to Make Us Who We Are” on his list of the must-read brain books of 2018. “Rather than being another assessment of what the brain does, this one is about what it is—and more interestingly what it is not,” writes DiSalvo.
Boston Globe reporter Martin Finucane writes that MIT researchers have developed a new way to fabricate tiny objects. “The researchers are currently able to create objects that are around 1 cubic millimeter, with features as small as 50 nanometers,” Finucane explains. “The tiny structures could be useful in fields from optics to medicine to robotics.”
Popular Mechanics reporter David Grossman writes about a new fabrication technique developed by MIT researchers that allows for regular-sized objects to be shrunk down to the nanoscale. Grossman explains that the new method, “takes a technique currently used to make images of brain tissue larger and reverses it.”
Inside Science reporter Yuen Yiu writes that MIT researchers have developed a new technique for producing nanoscale structures using a 3-D printing method that shrinks objects. Yiu explains that the new technique operates by “first creating a bigger structure inside of a gel, then shrinking the gel, which brings the structure down to one-thousandth the volume of the original.”
MIT researchers have developed a new method to shrink 3-D printed objects, reports Douglas Heaven for New Scientist. The technique can be used to create a wide variety of shapes using different materials. “In the 1970s hobbyists built their own computers at home,” explains Prof. Edward Boyden. “Maybe people can now make their own chips.”
MIT researchers have engineered wasp venom to kill bacteria, reports Chukwuma Muanya for The Guardian. The researchers found that the altered peptides wiped out the antibiotic-resistant bacteria Pseudomonas aeruginosa within four days.
Forbes reporter Fiona McMillan writes that MIT researchers have engineered an anti-bacterial peptide found in wasp venom in an effort to create a new antibiotic. McMillan writes that the researchers, “gained new insight into which structural attributes work best, either alone or in combination. In this way, they were able to tweak the peptide’s structure to obtain optimal function.”
MIT researchers have repurposed the toxic venom found in wasps to create a new drug that could potentially be used to kill bacteria, reports the Xinhua news agency. “The venom-derived peptide is believed to kill microbes by disrupting bacterial cell membranes,” Xinhua explains.
Boston Herald reporter Jordan Graham writes that MIT researchers have used the venom from a South American wasp to engineer a new type of antibiotic. “The idea here is to take that very well-crafted toxin and turn it into something that can be useful for humans and our society,” explains César de la Fuente Nunez, a postdoc at MIT.
MIT researchers have developed a new technique to measure cancer cells that provides insight into how certain cells respond to treatment, reports the Xinhua news agency. The findings could be used to help develop new drug targets, making current treatments more effective.
MIT researchers have developed a new injectable material that can deliver medication through cartilage and could one day be used to help reverse osteoarthritis, reports Katie Camero for The Boston Globe. Camero explains that the new material “can penetrate deep into the tissue, delivering drugs that can potentially help the chondrocytes heal cartilage.”
Prof. Linda Griffith speaks with Hari Sreenivasan of PBS NewsHour about her work developing a new “body on a chip” that could allow researchers to test new drugs on organ tissue. Griffith explains that the device models how different organs and cells communicate in the human body, which is “really important for things like arthritis, Alzheimer's, where you've got multiple organs involved.”
Reporting for WBUR’s CommonHealth, Carey Goldberg highlights new classroom kits developed by MIT researchers that allow kids to learn and experiment with the building blocks of DNA. "I just think it's really important that microbiology education is accessible for everyone," says graduate student Ally Huang, "and that everyone, regardless of their resources, has access to things like this."