Skip to content ↓

Topic

Bioinspiration

Download RSS feed: News Articles / In the Media

Displaying 1 - 15 of 29 news clips related to this topic.
Show:

TechCrunch

TechCrunch reporter Brian Heater spotlights multiple MIT research projects, including MIT Space Exploration Initiative’s TESSERAE, CSAIL’s Robocraft and the recent development of miniature flying robotic drones.

WHDH 7

MIT engineers have created insect-sized robots that can emit light when they fly and could eventually be used to aid search-and-rescue missions, reports WHDH. “Our idea is, if we can send in hundreds or thousands of those tiny flying robots then once they find that survivor, they will shine out light and pass information back and signal people on the outside saying ‘we found someone who’s trapped,'” explains Prof. Kevin Chen.

Popular Science

MIT engineers have developed tiny flying robots that can light up, reports Colleen Hagerty for Popular Science. “If you think of large-scale robots, they can communicate using a lot of different tools—Bluetooth, wireless, all those sorts of things,” says Prof. Kevin Chen. “But for a tiny, power-constrained robot, we are forced to think about new modes of communication.”

Science

Using cellulose nanocrystals found in trees, MIT researchers have developed a new material that is both tough and strong, reports Kathryn Hulick for Science News for Students. Abhinav Rao PhD ’18 explains that he was inspired to create the material “by looking at what nature has to teach us.”

Smithsonian Magazine

MIT scientists have discovered a way to watch and record the development of butterfly scales from the inside of a butterfly’s chrysalis, reports Elizabeth Gamillo for Smithsonian Magazine. “The team plans on further exploring the structure of butterfly wings and the reasoning behind the ridged design,” writes Gamillo.

CNET

CNET science writer Monisha Ravisetti spotlights MIT researchers who have successfully recorded the scale formation of butterfly wings during its transformation. “Understanding their schematics could ultimately benefit constructed materials like windows and thermal systems and even bring an ethereal quality to textiles,” writes Ravisetti.

Popular Science

Popular Science reporter Hannah Seo writes that MIT researchers have developed a way to watch and record how the microscopic scales on a butterfly’s wings grow and tile themselves as the butterfly develops inside its chrysalis. The researchers hope to “use butterfly scales as inspiration for the design of new materials,” writes Seo. “Butterfly scales have other fascinating properties such as water repellency and the ability to regulate temperature.”

Ars Technica

ARS Technica senior writer Jennifer Ouellette spotlights MIT researchers who have successfully recorded the structural growth of butterfly wings inside its chrysalis for the first time. “A lot of these stages were understood and seen before, but now we can stitch them all together and watch continuously what’s happening, which gives us more information on the detail of how scales form,” says research assistant Anthony McDougal. 

Wired

Wired reporter Max G. Levy writes that MIT researchers have developed a glue inspired by barnacles that can adhere to wet tissues and stop bleeding in seconds. “For us, everything is a machine, even a human body,” says research scientist Hyunwoo Yuk. “They are malfunctioning and breaking, and we have some mechanical way to solve it.”

Physics World

MIT researchers have developed a new type of stent based on kirigami, the Japanese art of folding and cutting paper, which is “designed to improve localized drug delivery for diseases that affect tubular organs such as the oesophagus and bowel,” writes Cynthia Keen for Physics World. “We view these approaches as having the capacity to transform the patient experience by reducing the need to take medications and thereby significantly improving drug adherence,” says Prof. Giovanni Traverso.

Medgadget

MIT researchers have developed a new stent based on kirigami, the Japanese art of cutting and folding paper. The stent “can provide localized drug delivery through needle-like projections that pop out when the stent is extended,” reports Conn Hastings for Medgadget.

Mashable

Mashable reporter Jordan Aaron spotlights how MIT researchers have developed insect-sized drones that can flap their wings over 500 times per second, allowing them to withstand collisions. The drones are “powered by a small actuator, which gives them the ability to flap so fast.”

BBC News

Graduate student Ashley Beckwith speaks with BBC Radio 5 about her work developing a new concept for growing wood in the lab, as part of an effort to supplement traditional forestry methods. "We dedicate a lot of resources to growing whole plants, when all we use really is a very small portion of the plant,” says Beckwith. “So somehow we needed to figure out a more strategic way to reproduce materials that isn't so reliant on the land."

National Public Radio (NPR)

Prof. Kevin Chen speaks with NPR about his work developing a new microdrone inspired by how an insect flaps its wings. “Because our soft power robot is very robust, of course, we can do interesting maneuvers, such as doing a somersault, we can survive collisions, et cetera,” he explains.

WHDH 7

Speaking with WHDH, Prof. Kevin Cheng explains how he was inspired by the agility of insects to create tiny new drones that are acrobatic and resilient. “Think about a scenario, for example, a building collapse with people trapped inside, and what we’re thinking of is sending a swarm of drones into this collapsed building to search for survivors,” says Chen. “That’s something very difficult for traditional drones.”