Skip to content ↓

Topic

Bioengineering and biotechnology

Download RSS feed: News Articles / In the Media

Displaying 1 - 15 of 129 news clips related to this topic.
Show:

The Conversation

The Conversation spotlights Institute Prof. Robert Langer ‘74 who spoke at the 2022 Imagine Solutions Conference about his academic career and work applying his chemical engineering background to his research in health sciences. “I learned that if you’re not your own champion, nobody else will be,” says Langer. “So, I got involved in patenting things, and my students were very interested in seeing their work make a difference… My story is sort of one person’s example of how you can try to use science to help relieve suffering and prolong life.”

The Boston Globe

Boston Globe reporter David Abel spotlights the Mice Against Ticks project, which is aimed at preventing tick-borne diseases such as Lyme disease through immunizing mice.  “With so many people suffering from Lyme every single day, which is an awful disease, we need a solution urgently,” explains graduate student and Mice Against Ticks research director Joanna Buchthal. “This offers a real, if revolutionary, way to tackle the problem.”

The Boston Globe

Satellite Bio, a startup co-founded by Prof. Sangeeta Bhatia, aims to create “tissue implants to ‘repair, restore, or even replace’ diseased or dying organs,” reports Ryan Cross for The Boston Globe.

TechCrunch

MIT startup Volta Labs is developing a new instrument that can automate the processes used to prepare genetic samples, reports Emma Betuel for TechCrunch. CEO and co-founder Udayan Umapathi ’17 is confident that with the right programming, the platform could allow “liquids to be manipulated in even more complex ways, like using magnetic fields to draw certain molecules out of samples for further analysis,” writes Betuel.

Reuters

Prof. Timothy Lu, Prof. Jim Collins and Philip Lee ’03 co-founded Senti Bio, a biotechnology company that uses gene circuit technology to create cell and gene therapies that can sense and respond to ailments inside the body, reports Sohini Podder for Reuters. “The way I like to think about it – just like you can program a computer with different programs or different maps, we can do the same thing with medicines,” says Lu.

Forbes

Forbes reporter Jack Kelly profiles Institute Prof. Robert Langer, spotlighting his career journey and his passion for helping others. “I traded job security and high pay for doing things I was passionate about,” Langer explains. “Out of over 20 job offers I received upon graduation from college, I chose the lowest paying one by far because I thought by doing so, I could potentially improve the health of patients. I dreamed about doing things that I thought would make the world a better place.”

The Washington Post

Writing for The Washington Post, Prof. Kevin Esvelt argues that research aimed at creating pandemic-causing viruses should be considered a matter of international security. “Natural pandemics may be inevitable. Synthetic ones, constructed with full knowledge of society’s vulnerabilities, are not,” writes Esvelt. “Let’s not learn to make pandemics until we can reliably defend against them.”

Bloomberg Businessweek

Orna Therapeutics, which was co-founded by MIT researchers, is working on “programming RNA with genetic code that instructs a line to split into several strands and then repair itself in the shape of a circle,” reports Bloomberg Businessweek reporter Angelica LaVito. “Delivering those messages via circles may produce a more stable, longer-lasting signal, potentially treating cancer, autoimmune disorders, and genetic diseases.”

Nature

Nature reporter Eric Bender spotlights MIT startup Kytopen, which has developed a microfluidic platform to create induced pluripotent stem (iPS) cells and other forms of cell therapy. We want to do minimally invasive surgery,” says Kytopen co-founder Prof. Cullen Buie.

New York Times

New York Times reporter Steve Lohr spotlights the origin and history of MIT startup Gingko Bioworks, a synthetic biology company founded with a “shared belief that biology could be made more like computing with reusable code and standard tools instead of the bespoke experiments of traditional biology." Jason Kelly ’03, PhD ’08, one of the founders of MIT startup Ginkgo Bioworks and the company’s chief executive, explains that “the ultimate goal for Ginkgo is to make it as easy to program a cell as it is to program a computer.”

Bloomberg Radio

Bloomberg’s Janet Wu speaks with alumna Nan-Wei Gong PhD '13, co-founder of Figur8, an MIT startup applying AI to help diagnose musculoskeletal problems. “Figur8 is a tool that really brings lab experience into the field so everyone can quantify their musculoskeletal injuries,” says Gong. “We invented a wearable system that allows you to capture biomarkers of your musculoskeletal health and pinpoint injury through our AI algorithm.”

Fast Company

Professor Xuanhe Zhao and his colleagues have developed a new soft robotic prosthetic hand that offers the wearer more tactile control. “You can use it to grab something as thin and fragile as a potato chip, or grasp another hand in a firm-but-safe handshake,” writes Mark Wilson for Fast Company. “By design, this rubbery, air-filled hand is naturally compliant.”

Dezeen

Dezeen reporter Rima Sabina Aouf writes that MIT researchers have created an inflatable prosthetic hand that can be produced for a fraction of the cost of similar prosthetics. “The innovation could one day help some of the 5 million people in the world who have had an upper-limb amputation but can't afford expensive prostheses.”

Mashable

Engineers at MIT have developed a soft, inflatable, neuroprosthetic hand that allows users to carry out a variety of tasks with ease, reports Emmett Smith for Mashable. “People who tested out the hand were able to carry out quite complex tasks, such as zipping up a suitcase and pouring a carton of juice.”

The Boston Globe

Ginkgo Bioworks founders Jason Kelly PhD ’08, S.B. ’03 and Reshma Shetty PhD ’08 speak with Boston Globe reporter Scott Kirsner about the inspiration for and growth of the company, which is focused on manipulating genetic material to get living cells to perform new jobs. Shetty notes that the Ginkgo Bioworks team is “dedicated to making biology easier to engineer."