Skip to content ↓



Download RSS feed: News Articles / In the Media / Audio

Displaying 16 - 30 of 89 news clips related to this topic.

Boston 25 News

Prof. James Collins speaks with Boston 25 reporter Julianne Lima about the growing issue of antibiotic resistant bacteria and his work using AI to identify new antibiotics. Collins explains that a new platform he developed with Prof. Regina Barzilay uncovered “a host of new antibiotics including one that we call halicin that has remarkable activity against multi drug-resistant pathogens.”


A study by researchers from MIT’s Singapore-MIT Alliance for Research and Technology (SMART) finds antibiotic resistance in some types of bacteria may be reversed using hydrogen sulphide, reports Melanie Sison for SciDevNet. “This is a very exciting discovery because we are the first to show that H2S can, in fact, improve sensitivity to antibiotics and even reverse antibiotic resistance in bacteria that do not naturally produce the agent,” says Wilfried Moreira, a principal investigator at SMART.

Health Europa

Researchers from the Singapore-MIT Alliance for Research and Technology have “discovered a way to increase antimicrobial sensitivity in bacteria by exposing them to hydrogen sulphide (H2S),” reports Health Europa.


Forbes reporter Amy Feldman spotlights MIT startup Ginkgo Bioworks, which aims to “design, modify and manufacture organisms to make existing industrial processes cheaper and entirely new processes possible.” Feldman notes that the promise of synthetic biology is “not just a proliferation of new products, but also a reduction of the environmental harm that comes from our heavy reliance on petrochemicals.”

Scientific American

Diana Kwon highlights the research of Prof. Katharina Ribbeck in an article for Scientific American about the biological benefits of mucus. “I like to call [mucus] the unsung hero of the body — it’s something that has such powerful effects over our health,” says Ribbeck.


Xinhua reports that MIT researchers have “discovered that lung tumors could hijack bacteria within the lung to promote their own survival.” As Tyler Jacks, director of the Koch Institute and the paper’s senior author explains, this research "opens up multiple potential avenues toward lung cancer interception and treatment.”


Writing for Forbes, Jeff Kart highlights how MIT researchers have developed a new technique to process samples of bacteria and gauge whether the bacteria can produce electricity. “The vision is to harness the most-powerful bacteria for tasks like running fuel cells or purifying sewage water,” Kart explains.


Guardian reporter Ian Sample writes that MIT startup Synlogic are developing a “living” medicine” made from genetically modified bugs. “By engineering these bacteria, we are able to control how they operate in the human gastrointestinal tract,” says Caroline Kurtz of Synlogic. “It allows us to think about many other diseases where you may need to produce something beneficial, or remove something that is toxic for the patient.”


MIT researchers have engineered wasp venom to kill bacteria, reports Chukwuma Muanya for The Guardian. The researchers found that the altered peptides wiped out the antibiotic-resistant bacteria Pseudomonas aeruginosa within four days.


Forbes reporter Fiona McMillan writes that MIT researchers have engineered an anti-bacterial peptide found in wasp venom in an effort to create a new antibiotic. McMillan writes that the researchers, “gained new insight into which structural attributes work best, either alone or in combination. In this way, they were able to tweak the peptide’s structure to obtain optimal function.”


MIT researchers have repurposed the toxic venom found in wasps to create a new drug that could potentially be used to kill bacteria, reports the Xinhua news agency. “The venom-derived peptide is believed to kill microbes by disrupting bacterial cell membranes,” Xinhua explains.

Boston Herald

Boston Herald reporter Jordan Graham writes that MIT researchers have used the venom from a South American wasp to engineer a new type of antibiotic. “The idea here is to take that very well-crafted toxin and turn it into something that can be useful for humans and our society,” explains César de la Fuente Nunez, a postdoc at MIT.


Science reporter Tania Rabesandratana examines how MIT researchers are gathering and identifying gut bacteria from people around the world. The effort is aimed at preserving the human gut’s microbial biodiversity and developing new treatments for diseases. “I'm 100% confident that there are relevant medical applications for hundreds of strains we've screened and characterized,” explains Prof. Eric Alm.


STAT reporter Orly Nadell Farber writes about a new study by MIT researchers that shows glaucoma might be caused by T-cells, an integral component of the human body’s immune system, attacking retinal cells. Farber explains that, “this discovery could unlock a critical new door for treatment options.”

United Press International (UPI)

A new study by MIT researchers provides evidence that glaucoma may be caused by an autoimmune disease, according to a HealthDay News piece published by UPI. “Further research will try to determine whether other parts of the immune system play a role in glaucoma, and whether autoimmunity is a factor in degenerative brain diseases.”