Skip to content ↓

Topic

Astronomy and astrophysics

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 446 news clips related to this topic.
Show:

The Boston Globe

MIT researchers have analyzed tiny particles from a distant asteroid and found that a weak magnetic field may have helped form the outer planets in our solar system,  reports Sabrina Lam for The Boston Globe. In the future, the researchers hope to use samples from other celestial bodies to identify magnetic fields in our universe. “An exciting thing that’s probably going to happen in the next few decades,” says Prof. Benjamin Weiss, “is that we’re going to start bringing samples back from comets.”

New York Times

Researchers at MIT and elsewhere have discovered a “black-hole triple, the first known instance of a three-body system that includes a black hole, which is not supposed to be part of the mix,” reports Dennis Overbye for The New York Times.  The researchers propose that the black hole “could have resulted from a sort of immaculate conception whereby the progenitor star disappeared from the universe without any fireworks.”

Reuters

Astronomers from MIT and elsewhere have “identified a black hole that appears to have come into being through the collapse of the core of a large star in its death throes, but without the usual blast,” explains Will Dunham for Reuters. “Black holes have previously been spotted orbiting with one other star or one other black hole in what are called binary systems,” explains Dunham. “But this is the first known instance of a triple system with a black hole and two stars.”

Newsweek

Researchers from MIT and elsewhere have discovered a black hole triple – a black hole with two orbiting stars around it at varying distances – for the first time, reports Jess Thomson for Newsweek. The researchers believe this “first-of-its-kind discovery could help unravel the mysteries of how black holes form and how they enter into binaries or triples,” writes Thomson. 

Popular Science

Popular Science reporter Laura Baisas writes that MIT physicists have discovered, for the first time, a black hole triple. “Since the new triple system includes a very far-off star, the system’s black hole was potentially born through [a] gentler direct collapse,” writes Baisas. “While astronomers have been observing violent supernovae for centuries, this new triple system may be the first evidence of a black hole that formed from this more gentle process.” 

Gizmodo

Physicists from MIT and Caltech have discovered a black hole triple system, “consisting of three bodies spinning around each other about 7,800 light-years from Earth,” writes Isaac Schultz for Gizmodo. Schultz notes that the finding “pushes the envelope,” revealing “a system with one black hole and two stars—a configuration never seen before.”

The Boston Globe

Boston Globe reporter Nick Stoico spotlights how researchers from MIT and Caltech have observed a “black hole triple” for the first time. “This one is satisfying because it’s kind of a simple discovery,” explains postdoctoral associate Kevin Burdge. “It’s just looking at a picture, and I think it reminds a lot of astronomers that there’s more to the job than just analyzing complicated data. You shouldn’t forget to do the simple things, like just look with your own eyes at some pictures and see what you find.” 

Mashable

Using the James Webb Telescope, researchers at MIT have found quasars, “some of the brightest objects in the cosmos, adrift in the empty voids of space,” reports Mark Kaufman for Mashable. “This latest cosmic quandary is not just about how these quasars formed in isolation, but how they formed so rapidly,” explains Kaufman. 

Forbes

Graduate student Samantha Hasler and her colleagues have gathered new information on Uranus using the Hubble Space Telescope and the New Horizons spacecraft, reports Jamie Carter for Forbes.  "Studying how known benchmarks like Uranus appear in distant imaging can help us have more robust expectations when preparing” for future missions, explains Hasler. 

Gizmodo

Researchers at MIT and elsewhere have found a connection between “the bursts and tidal disruptions events” of black holes, research that could help "astrophysicists understand the extreme environments around supermassive black holes, as well as the occupants of those environments,” reports Isaac Schultz for Gizmodo. “There had been feverish speculation that these phenomena were connected, and now we’ve discovered the proof that they are,” says Research Scientist Dheeraj Pasham. “It’s like getting a cosmic two-for-one in terms of solving mysteries.” 

Popular Mechanics

A new study by MIT scientists proposes that researchers should be able to detect near-flying primordial black holes by measuring the orbit of Mars, reports Darren Orf for Popular Mechanics. The researchers found that “if a primordial black hole passed within a few hundred million miles of the Red Planet, then a few years later, the planet’s orbit would have shifted by the small (but technically detectable) distance of about a meter,” Orf explains.

Scientific American

MIT physicists have discovered that "black holes the size of an atom that contain the mass of an asteroid may fly through the inner solar system about once a decade” and could cause planets or large moons slightly off course, reports Clara Moskowitz for Scientific American  “As it passes by, the planet starts to wobble,” says Sarah R. Geller '12, SM '17, PhD '23. “The wobble will grow over a few years but eventually it will damp out and go back to zero.”

New Scientist

Postdoctoral research Wenxuan Jia PhD '24 and colleagues at the Laser Interferometer Gravitational-Wave Observatory (LIGO) have developed a way to reduce the impact of quantum noise by squeezing the laser light used in the detectors, enabling scientists to double the number of gravitational waves they can find, reports Karmela Padavic-Callaghan for New Scientist. “We realized that quantum noise will be limiting us a long time ago,” says Jia. “It’s not just a fancy [quantum] thing to demonstrate, it’s something that really affects the actual detector.” 

Los Angeles Times

MIT physicists have found that “the presence of a tiny black hole speeding through the solar system could be identified by the gentle gravitational nudge it exerted on the Earth and other planets, which would alter their orbital paths by no more than a few feet,” reports Noah Haggerty for The Los Angeles Times. “It’s just fantastic that the most conceptually conservative response is to say, ‘It’s just super tiny black holes that were made a split second after the Big Bang,’” says Prof. David Kaiser. “It’s not inventing new forms of matter that have not yet been detected. It’s not changing the laws of gravity.”

Newsweek

A new study by MIT researchers suggests that miniscule black holes could briefly wobble the orbit of Mars and that these tiny black holes may pass through our solar system once every decade or so, reports Jess Thomson for Newsweek. “The researchers modeled the orbits of every large body in the solar system,” writes Thomson, “and found that tiny wobbles in the orbit of Mars could indicate one of the asteroid-mass black holes passing through.”