Skip to content ↓

Topic

Astronomy and astrophysics

Download RSS feed: News Articles / In the Media / Audio

Displaying 331 - 345 of 508 news clips related to this topic.
Show:

PBS NOVA

Prof. Sara Seager speaks with Nova Wonders about the hope of finding “some sign of life” with the TESS mission. "We'd like to see methane and other gases,” says Seager. “And some of these, on their own or together, would help make the case for life on another planet.”

New Scientist

NASA’s recently launched Transiting Exoplanet Survey Satellite (TESS) “will spend the next two years scanning 200,000 stars looking for any exoplanets orbiting them,” explains New Scientist. In about two months, once the satellite is in orbit and its cameras are tested, “there’ll just be a flood of information,” says MIT’s George Ricker, the principal investigator on TESS.

CNN

NASA has successfully launched its “planet-hunting” Transiting Exoplanet Survey Satellite, more than a decade after MIT scientists first proposed the idea of a mission like TESS, reports Ashley Stickland for CNN. “NASA believes that TESS will build on Kepler’s momentum and open the study of exoplanets in unprecedented ways,” writes Strickland.

Popular Mechanics

After launching into space on a SpaceX Falcon 9 rocket, “NASA's newest planet-hunter, the TESS space telescope, will observe roughly 85 percent of the sky to find planets orbiting bright, nearby stars,” writes Jay Bennett of Popular Mechanics. "Never underestimate how ingenious nature actually is," said MIT’s George Ricker, who is the principal investigator on TESS.

Wired

The Transiting Exoplanet Survey Satellite (TESS) will enter an unusual, highly elliptical orbit around the Earth to capture images of about 20,000 new exoplanet candidates, writes Robbie Gonzalez of Wired. "We are setting the stage for the future of exoplanet research—not just for the 21st century, but the 22nd century and beyond," says MIT Kavli Institute senior research scientist George Ricker, leader of the TESS mission.

The Verge

Loren Grush of The Verge examines the potential findings of NASA’s Transiting Exoplanet Survey Satellite (TESS), which “will stare out at the cosmos searching for never-before-seen worlds” for two years, after launching on April 16. “[W]e’ll have a whole catalog of these planets in an order of priority for follow-up,” says Prof. Sara Seager, deputy science director for TESS.

The Boston Globe

With the launch of NASA’s Transiting Exoplanet Survey Satellite near, Elise Takahama of The Boston Globe spoke with Roland Vanderspek, a principal research scientist at MIT’s Kavli Institute, about the mission. “I’m hoping we get some really beautiful images,” said Vanderspek, “and enable good science all around the world.”

Press Trust of India

Developed by MIT scientists, the Transiting Exoplanet Survey Satellite (TESS) aims to discover thousands of nearby exoplanets including about 50 Earth-sized ones, reports the Press Trust of India. "We're on this scenic tour of the whole sky, and in some ways we have no idea what we will see. It's like we're making a treasure map," says Natalia Guerrero, technical associate at the Kavli Institute.

The Boston Globe

An international research team, led by postdoctoral fellow Carl Rodriguez, has found that dense star clusters could be a breeding ground for black holes, writes Elise Takahama for The Boston Globe. These star clusters “can create a new black hole that’s more massive and the new massive one can find itself another companion and potentially merge again,” Rodriguez explains.

Popular Mechanics

With NASA’s Transiting Exoplanet Survey Satellite, or TESS, set to launch in less than a week, Jay Bennett of Popular Mechanics speaks with TESS Principal Investigator George Ricker of the MIT Kavli Institute. “TESS is really a finder scope,” says Ricker. “The main thing that we're going to be able to do is find a large sample from which the follow-up observations can be carried out in decades, even centuries to come.”

The Boston Globe

Research led by Dheeraj Pasham, a postdoc at MIT's Kavli Institute, provides evidence “that black holes feed on passing stars then eject energetic jet streams,” writes Laney Ruckstuhl for The Boston Globe. “Such black hole jet streams can have large implications for the galaxies they enter. Pasham said they can regulate the growth of a galaxy because of their energy levels."

Newsweek

Meghan Bartels of Newsweek discusses a discovery from the Kavli Institute of the first tidal disruption flare or “jet” that’s been produced due to a supermassive black hole consuming a star in space. “This is telling us the black hole feeding rate is controlling the strength of the jet it produces,” NASA Einstein Postdoc Fellow and lead researcher Dheeraj Pasham said. 

UPI

Brooks Hays for UPI highlights research led by postdoc Dheeraj Pasham from MIT's Kavli Institute, that has captured the rare occurrence of “radio signals produced by a black hole devouring a star.” “This is the first time we've seen a jet that's controlled by a feeding supermassive black hole,” explained Pasham.

Popular Science

Mary Beth Griggs writes for Popular Science about a new Nature study where researchers have identified cold hydrogen dating back to 180 million years post-big bang. “Some of the radiation from the very first stars is starting to allow hydrogen to be seen,” says Alan Rogers of the Haystack Observatory.

Reuters

Hydrogen detected via radio waves by MIT researchers indicates the presence of stars 180 million years after the Big Bang, reports Will Dunham of Reuters. The radio waves also indicate that the universe was likely twice as cold as was previously believe, which Research Affiliate Alan Rogers suggests “might be explained by interaction between the gas and dark matter.”