Skip to content ↓

Topic

Astronomy

Download RSS feed: News Articles / In the Media / Audio

Displaying 121 - 135 of 419 news clips related to this topic.
Show:

Forbes

MIT researchers have uncovered evidence that the creation of a new black hole or neutron star caused a strange blue flash of light in space that was detected in 2018, reports Téa Kvetenadze for Forbes. An explanation for the event was elusive until researchers “focused on the X-rays emitted by the flash and found the Cow was producing a pulse of X-rays every 4.4 milliseconds.”

CNET

CNET reporter Monisha Ravisetti writes that MIT researchers have found that a super-bright stellar explosion detected in 2018 likely gave rise to a new black hole or neutron star.  "Usually, I dare not say 'first time,'" explains research scientist Dheeraj "DJ" Pasham. "But I truly think this is the first time that you have direct confirmation, so to say, that a star dies and you immediately see the baby compact object."

Newsweek

A team of astronomers, including MIT researchers, has discovered an ultrahot Jupiter that orbits its star in just 16 hours, reports Robert Lea for Newsweek. “Ultrahot Jupiters such as TOI-2109b constitute the most extreme subclass of exoplanet,” explains former MIT postdoc Ian Wong. “We have only just started to understand some of the unique physical and chemical processes that occur in their atmospheres – processes that have no analogs in our own solar system.” 

Newsweek

Newsweek reporter Robert Lea writes that astronomers from MIT and elsewhere have found evidence of a large planetary collision that stripped the atmosphere from a planet. “While astronomers have long believed these kinds of collisions are common throughout the Universe, this is the first time that they have spotted evidence of one that stripped an atmosphere in such a way around a distant star,” writes Lea.

Space.com

A new study co-authored by MIT researchers presents the first evidence that a distant planet had its atmosphere partially blown away by a large impact, reports Charles Choi for Space.com. "I think a really critical implication is that the gas that is released in the aftermath of a giant impact can last for a long time, and it can affect the way the system evolves long-term," explains graduate student and lead author Tajana Schneiderman. 

The Boston Globe

Tim Brothers of the MIT Wallace Astrophysical Observatory speaks with Boston Globe reporter Thomas Farragher about the importance of reducing artificial light pollution. “There are a lot of other reasons you should care about light pollution. Maybe it’s health,” says Brother. “The reason the bugs aren’t doing what they’re supposed to be doing — feeding or living or pollinating — is the same reason we’re not doing the right thing.”

National Public Radio (NPR)

NPR’s Nell Greenfieldboyce spotlights how LIGO has helped to usher in a “big astronomy revolution” that is allowing scientists to listen to the universe. “The exciting thing is when you've got a new instrument, you know, a brand-new way of looking at things,” says Greenfieldboyce, “you don't know what you might detect that you never even thought of because until now, you just weren't able to look at the universe in this way.”

Popular Mechanics

Researchers from MIT and other institutions have been able to observationally confirm one of Stephen Hawking’s theorems about black holes, measuring gravitational waves before and after a black hole merger to provide evidence that a black hole’s event horizon can never shrink, reports Caroline Delbert for Popular Mechanics. “This cool analysis doesn't just show an example of Hawking's theorem that underpins one of the central laws affecting black holes,” writes Delbert, “it shows how analyzing gravitational wave patterns can bear out statistical findings.”

CNN

CNN reporter Ashley Strickland writes about how researchers from the CHIME collaboration have announced that they have detected over 500 fast radio bursts (FRBs) using a radio telescope in Canada. "With all these sources, we can really start getting a picture of what FRBs look like as a whole, what astrophysics might be driving these events, and how they can be used to study the universe going forward," explains graduate student Kaitlyn Shin.

Nature

Scientists from the CHIME Collaboration, including MIT researchers, have reported that the radio telescope has detected more than 500 fast radio bursts in its first year of operation, reports Davide Castelvecchi for Nature. The findings suggest that these events come in two distinct types. “I think this really just nails it that there is a difference,” says Prof. Kiyoshi Masui.

The Boston Globe

The CHIME radio telescope has catalogues more than 500 fast radio bursts (FRBs), which could be used to help map the universe, reports Charlie McKenna for The Boston Globe. FRBs are “kind of like lighthouses or sonar pings,” explains graduate student Calvin Leung, “and for the very first time we’ve shown that we can detect them in large enough quantities that you can really use them to make statements like, ‘Oh, the universe is expanding at this rate,’ or ‘This is how much matter there is in the whole universe.’”

Inverse

Inverse reporter Passant Rabie explores how the CHIME radio telescope has identified more than 500 fast radio bursts in its first year of operation, providing clues as to the structure of the universe. “With enough of them, they are going to be the ultimate tool for mapping the universe,” says Prof. Kiyoshi Masui.

National Public Radio (NPR)

Brother Guy Consolmagno ’74, director of the Vatican Observatory, speaks with Sylvia Poggioli of NPR about his desire to promote a greater dialogue between faith and science. "Because people can see science in action, science doesn't have all the answers," says Consolmagno. "And yet science is still with all of its mistakes and with all of its stumbling is still better than no science."

Axios

Axios reporter Miriam Kramer writes that a new study co-authored by MIT researchers suggests that all black holes go through a similar cycle when feeding, whether they are big or small. “Black holes are some of the most extreme objects found in our universe,” writes Kramer. “By studying the way they grow, scientists should be able to piece together more about how they work.”

The Boston Globe

Boston Globe reporter Charlie McKenna writes that a new study co-authored by MIT researchers finds that the way black holes evolve as they consume material is the same, no matter their size. “What we’re demonstrating is, if you look at the properties of a supermassive black hole in the cycle, those properties are very much like a stellar-mass black hole,” says research scientist Dheeraj “DJ” Pasham. The findings mean “black holes are simple, and elegant in a sense.”