Skip to content ↓

Topic

Astronomy

Download RSS feed: News Articles / In the Media / Audio

Displaying 76 - 90 of 419 news clips related to this topic.
Show:

The Hill

The Venus Life Finder (VLF) developed by scientists at MIT will be launched on a Rocket lab Electronic in May of 2023 to search for life in the upper atmosphere of Venus, reports Mark R. Whittington for The Hill. “When it plunges into Venus’ atmosphere it will use an instrument called the ‘autofluorescing nephelometer’ that will use a laser to illuminate organic molecules that may or may not exist 50 kilometers above the planet’s surface,” writes Whittington.

The Daily Beast

Prof. Sara Seager and her team have organized three  missions to Venus to search for signs of life in the clouds surrounding the planet, reports David Axe for the Daily Beast. Each mission “would fling a probe into the toxic planet’s acidic atmosphere and collect data on the presence, or absence, of something resembling life,” explains Axe.

Forbes

Scientists from MIT and other institutions have detected the longest-lasting and most regular radio signal in the night sky, reports Jamie Carter for Forbes. “Scientists think that the radio signal may be coming from a neutron star—what remains of the collapsed core of a giant star after it’s exploded as a supernova,” explains Carter.

Mashable

Astronomers from MIT and elsewhere have discovered radio signals in space that they believe to be coming from a neutron star, reports Tim Marcin for Mashable. “Using the CHIME (Canadian Hydrogen Intensity Mapping Experiment) radio telescope, astronomers noticed a strange FRB, or radio burst, from a far-off galaxy billions of light-years from Earth.”

VICE

Scientists from MIT and elsewhere have detected a series of fast radio bursts from a distant galaxy, reports Samantha Cole for Vice. “This detection raises the question of what could cause this extreme signal that we’ve never seen before, and how can we use this signal to study the universe,” says postdoctoral scholar Daniele Michilli. “Future telescopes promise to discover thousands of FRBs a month, and at that point we may find many more of these periodic signals.”

USA Today

A team of astronomers have identified a mysterious radio burst from a far-away galaxy, reports Wyatte Grantham-Philips for USA Today. “Imagine a very distant galaxy. And sometimes, some huge explosions happen that emit huge blasts of radio waves,” explains Daniele Michilli, who led the study and is a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research. “We don’t know what these explosions are, (but) they are so powerful that we can see them from across the universe.”

CNN

Postdoctoral scholar Daniele Michilli and members of the CHIME/FRB Collaboration have discovered radio bursts from a galaxy billions of light-years away, reports Ashley Strickland for CNN. “The research team will continue to use CHIME to monitor the skies for more signals from the radio burst, as well as others with a similar, periodic signal,” writes Strickland, noting the work “could be used to help astronomers learn more about the rate of the universe’s expansion.”

NPR

Astronomers at MIT and elsewhere have picked up repeated radio signals from a galaxy billions of light-years away from Earth, reports Ayana Archie for NPR. “Scientists have not been able to pinpoint the exact location of the radio waves yet, but suspect the source could be neutron stars, which are made from collapsed cores of giant stars,” writes Archie.

The Boston Globe

Reporting for The Boston Globe, Hanna Kreuger highlights a graph documenting the atmospheric conditions of the exoplanet WASP-96b, which NASA included in its first release of images from the James Webb Space Telescope. Describing it as “perhaps the image that showcases Webb’s greatest triumph,” Krueger notes that the graph was created using an equation developed by Prof. Sara Seager. Seager and her team will use the telescope to peer into TRAPPIST-1e, an exoplanet widely considered to be potentially Earth-like and habitable, adds Krueger.

CBS Boston

As the first images from the James Webb Space Telescope were released on Tuesday, showcasing the deepest view of the universe ever, CBS Boston spoke with Prof. Julien de Wit about the importance of the moment. “It’s groundbreaking. It’s like going from listening to the radio to suddenly being able to watch television,” says de Wit. “Further down the road, we may be able to see if planets are habitable, if some of these planets have signs of life one way or the other. There are so many things we’re going to discover thanks to it.”

WCVB

Prof. Robert Simcoe and his team will receive 100 hours with the new James Webb Space Telescope to look at some of the first stars and galaxies to form after the Big Bang, reports David Bienick for WCVB. “I’m tremendously excited,” says Simcoe. “We have been preparing for this moment since 2016, knowing that we were going to have time and starting to prepare our observations, and waiting for the telescope to be ready.”

New Scientist

MIT researchers have created Thesan, the most detailed model of the early universe to date, reports New Scientist. “Thesan shows how radiation shaped the universe from 400,000 to 1 billion years after the Big Bang,” writes New Scientist.

Forbes

Astronomers have identified two Earth-sized exoplanets orbiting a red dwarf star 33 light years away, reports Jamie Carter for Forbes. “Both planets in this system are each considered among the best targets for atmospheric study because of the brightness of their star,” explains postdoc Michelle Kunimoto.

NBC News

Prof. Erin Kara speaks with Harry Smith of NBC News about the data sonification of the black hole at the center of the Perseus Galaxy. Kara notes that data sonification is “a really exciting way to hear the universe and think about it in a new way.”

The Washington Post

Astronomers and researchers from MIT and 80 other institutions have captured the first image of a supermassive black hole at the center of our galaxy reports Joel Achenbach for The Washington Post.  “The pandemic slowed us down but it couldn’t stop us,” said research scientist Vincent Fish of the pandemic’s impact on the Event Horizon Telescope team’s work.