Skip to content ↓

Topic

3-D printing

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 192 news clips related to this topic.
Show:

BostInno

BostInno reporter Isabel Tehan spotlights how MIT researchers have developed a model to predict how different shoes will impact different individual runners. “The model takes into account runner height, weight and other body dimensions, and the properties of the shoes — including stiffness or springiness — and can predict how that individual would run in a particular pair of shoes,” writes Tehan. “Ideally, we could make a shoe that's right for you and the way you run,” explains postdoc Sarah Fay.

DesignBoom

Researchers from MIT have developed liquid metal printing, a new technique that can be used to quickly 3D print large-scale objects such as furniture, reports Designboom. The researchers say this technique can enable 3D printing, “ten times faster than a comparable metal additive manufacturing process, and the process of melting the metal may be more efficient than some other methods, given that metal is also more accessible with the abundance of scraps that can be recycled,” writes Designboom.

TechCrunch

MIT researchers have developed a 3D printing technique called liquid metal printing (LMP) that capable of printing large aluminum parts at least 10 times faster than a comparable metal additive manufacturing process, reports Brian Heater for TechCrunch. LMP “utilizes a bed of 100-micron glass beads to create a structure into which molten aluminum is deposited — a process not entirely dissimilar from injection molding,” explains Heater. “The beads are capable of standing up to the intense temperature, while allowing the heat to quickly dissipate as the metal solidifies.”

Tech Briefs

Javier Ramos '12, SM '14, co-founder of InkBit, and his colleagues have developed a, “3D inkjet printer that uses contact-free computer vision feedback to print hybrid objects with a broad range of new functional chemistries,” reports Ed Brown for Tech Briefs. “Our vision for Inkbit is to reshape how the world thinks about production, from design to execution and make our technology readily available,” says Ramos. “The big opportunity with 3D printing is how to disrupt the world of manufacturing — that’s what we're focused on.”

The Daily Beast

Researchers from MIT and elsewhere have developed a new 3D printing process that “allows users to create more elastic materials along with rigid ones using slow-curing polymers,” reports Tony Ho Tran for the Daily Beast. The researchers used the system to create a, “3D printed hand complete with bones, ligaments, and tendons. The new process also utilizes a laser sensor array developed by researchers at MIT that allows the printer to actually ‘see’ what it’s creating as it creates it.”

NPR

Researchers at MIT have developed a mobile vaccine printer capable of printing a vaccine onto a patch of microneedles that can be absorbed into the skin without injection, reports Sandra Tsing for NPR. “These printed vaccines could be used in areas that are unable to refrigerate traditional vaccines,” explains Tsing.

The Boston Globe

VulcanForms, an MIT startup, is at the “leading edge of a push to transform 3-D printing from a niche technology — best known for new-product prototyping and art-class experimentation — into an industrial force,” writes David Scharfenberg for The Boston Globe. Scharfenberg notes that VulcanForms “could help usher in something new — a high-tech industrialism aimed straight at the country’s most pressing problems.”

CBC News

Principal Research Scientist Ana Jaklenec speaks with CBC host Bob McDonald about her work developing a mobile vaccine printer. The device “can be very important in certain scenarios when you’re trying to bring the ability to vaccinate in areas that might not have the right infrastructure to make vaccines or even to administer vaccines,” says Jaklenec, “so I think the portability is key here.” 

AFP

Researchers at MIT have developed a mobile printer that could create microneedle patches for mRNA vaccine delivery. “These "microneedle patches" offer a range of advantages over traditional jabs in the arm, including that they can be self-administered, are relatively painless, could be more palatable to the vaccine-hesitant and can be stored at room temperature for long periods of time,” writes Daniel Lawler for Agence France-Presse.

Genetic Engineering & Biotechnology News

Research scientist Ana Jaklenec spoke with Jonathan Grinstein at Genetic Engineering & Biotechnology News about a new microneedle patch printer she and her colleagues have developed that may one day enable on-demand vaccine manufacturing. “The idea was that you could, in an emergency situation, deploy some of these printers and locally vaccinate the population to prevent the global spread of infection,” says Jaklenec.

CNN

Callie Gade and Nate Bonham of CNN’s Discovery Daily Podcast spotlight how researchers from MIT developed a 3D printed replica of the human heart that can help doctors customize treatments for patients before conducting open heart surgery or other intrusive procedures. “These more patient-specific heart replicas can help future researchers develop and identify treatments for people with unique health problems,” says Gade.

NPR

Graduate student Crystal Owens speaks with NPR correspondent Miles Parks about her study which sought to find out the perfect ratio for breaking apart an Oreo cookie. “What we actually found was that all of the results were basically the same,” says Owens. “You can’t do it wrong because there’s no way to do it right.”

The Wall Street Journal

Wall Street Journal reporter Aylin Woodward writes about how graduate student Crystal Owens and undergraduate Max Fan set out to solve a cookie conundrum: whether there was a way to twist apart an Oreo and have the filling stick to both wafers. Woodward writes that for Owens, the research “was a fun, easy way to make her regular physics and engineering work more accessible to the general public.”

NBC

Dr. Akshay Syal, a medical fellow for NBC News, discusses how MIT researchers have developed a new technique to 3D print custom replicas of the human heart.

Bloomberg

Bloomberg reporter Tanaz Meghjani writes that MIT researchers created a new system to 3D print a customized replica of the human heart, which could help improve replacement valve procedures. The new system “mimics blood flow and pressure in individual diseased hearts, suggesting a way to predict the effects of various replacements and select the best fit, avoiding potential leakage and failure,” Meghjani writes.