Skip to content ↓

Topic

3-D printing

Download RSS feed: News Articles / In the Media / Audio

Displaying 106 - 120 of 205 news clips related to this topic.
Show:

Reuters

CSAIL researchers have developed a soft robotic fish, known as SoFi, that can “capture high-resolution photos and video with a camera built into its nose,” writes Will Dunham for Reuters. “The robot can be used as a marine biology instrument and also to measure pollution in coastal waters, to create maps, to do inspection, to monitor and track,” said Prof. Daniela Rus.

CNBC

MIT startup Ministry of Supply has developed a jacket that utilizes AI to keep its wearer warm. “The jacket…can also be voice-controlled through devices like the Amazon Echo or manually with an app,” writes Erin Black for CNBC.

TechCrunch

Developed by researchers at MIT and Cornell, the new Robotic Modeling Assistant (RoMA) uses an augmented reality headset that allows designers to more efficiently create 3D prototypes with CAD software. “A robotic arm then goes to work constructing a skeletal model using a simple plastic depositing 3D printer mounted on its hand,” explains Brian Heater for TechCrunch.

NBC

NBC Mach’s Denise Chow writes about MIT research being done to develop color-changing, 3D printed clothing using UV light. “We wanted to know, how can we update the color of an object at any time?” said Prof. Stephanie Mueller.

co.design

Jesus Diaz of Co.Design explains how MIT scientists have found that Legos can be used more easily to assemble microfluidic laboratories. Historically, doing so "required expensive custom prototyping and manufacturing methods." 

TechCrunch

MIT scientists have found that Legos can be used to create a portable, complex microfluidics lab, reports John Biggs of TechCrunch. While the Legos did have to be modified to run fine channels, the precision of the bricks and panels mean “you don’t need much more than a drill and some tubing to prototype a working microfluidics lab,” explains Biggs.

CNN

Kaya Yurieff reports for CNN that CSAIL researchers have developed a system that allows the colors of 3-D printed objects to be altered after they have been fabricated. Prof. Stefanie Mueller explains that, “this sort of technology could help minimize the amount of waste that is produced from updating products."

TechCrunch

TechCrunch reporter Brian Heater writes that MIT researchers have created a new system that allows users to change the color of 3-D printed objects. Heater explains that researchers, “are looking to bring color-changing properties to the 3D-printing process in an attempt to help reduce material waste.”

Quartz

Marc Bain of Quartz reports that CSAIL researchers have created a system that changes the color of 3-D printed objects using UV light. The researchers hope this system will allow consumers to, “quickly match accessories to outfits, or let retail stores switch the color of clothing or other items on the spot for customers,” explains Bain. 

Smithsonian Magazine

CSAIL researchers have developed a method that allows the color of 3-D printed objects to change after they have been printed, writes Emily Matchar for Smithsonian. The method uses, “UV light to change the pixels on an object from transparent to colored, and then a regular office projector to turn them from colored to transparent,” explains Prof. Stefanie Mueller.

Wired

Wired reporter Arielle Pardes Gear writes that CSAIL researchers have developed a new system, called ColorFab, that makes it possible to change the color of 3-D printed objects after they have been created. ColorFab allows users to change an object’s color, “by returning to the ColorFab interface, selecting the areas to recolor, and then activating those areas with UV light.”

The Boston Globe Magazine

The Boston Globe Magazine highlights two MIT spinoffs in a list spotlighting 19 bold new ideas and fresh faces from 2017. Startup Ministry of Supply, which creates custom apparel using high-tech design, has made “getting a great-fitting blazer...a seamless experience,” while another startup, Biobot, has begun analyzing sewer waste to determine which communities are most affected by opioids.

WBUR

Reporting for WBUR on the future of digital fabrication, Bruce Gellerman highlights a solar-powered architectural robot developed by MIT researchers. The robot can quickly design and build shelters for use in disaster-response situations or space exploration using a 3-D printing process. 

Quartz

MIT researchers have developed a new technique to 3-D print genetically engineered bacteria into a variety of shapes and forms, reports Karen Hao for Quartz. The technique could eventually be used to develop such devices as, “an ingestible living robot that secretes the correct drug when it detects a tumor.”

Inverse

MIT engineers have developed a method to 3-D print living cells into tattoos and 3-D structures, reports Danny Paez for Inverse. Paez explains that the researchers believe the technique, “could possibly be used to create a ‘living computer,’ or a structure made up of living cells that can do the stuff your laptop can.”