Skip to content ↓

MIT-made satellite -- first ever devoted to gamma ray bursts -- set for Oct. 7 launch

CAMBRIDGE, Mass. -- On October 7, an MIT-built satellite roughly the size and shape of a dishwasher will be launched into near-Earth orbit to detect the largest known explosions in the universe. These occurrences, called gamma-ray bursts (GRBs), signal the extragalactic release of as much power as a billion trillion suns, but no one is sure what causes them or exactly where they originate.

The High-Energy Transient Explorer (HETE-2) -- the first satellite dedicated to the study of GRBs -- will help scientists understand these perplexing explosions. HETE-2 is the result of an international collaboration of scientists and engineers at the Massachusetts Institute of Technology and other institutions in the US, France and Japan. HETE-2 will serve the world's astronomers as the premiere burst spotter until the end of its extended mission in 2004.

HETE-2 is the replacement mission for the original HETE satellite, lost during its launch in 1996 because of a rocket malfunction.


Gamma-ray bursts are one of the hottest topics in astronomy. Like beacons from the early universe, these bursts are thought to originate billions of light years away, at the limit of the Hubble Space Telescope's vision. Because the speed of light is finite, looking far away is like looking back in time.

Gamma-ray bursts may be the product of a hypernova -- a giant star explosion up to 1,000 times more powerful than a supernova -- or they may be caused by an orbiting pair of neutron stars coalescing, or even a neutron star being sucked into a black hole.

"Gamma ray bursts are colossal explosions. They are the most energetic events since the Big Bang, yet one occurs about once a day in the sky," said George R. Ricker, senior research scientist at the Center for Space Research at MIT and principal investigator for the 20-person international team. "The magic of HETE-2 is that it not only detects a large sample of these bursts, but it also will relay the accurate location of each burst in real time to ground-based optical and radio observatories."

The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory, deorbited by NASA in June, detected nearly 3,000 GRBs over its 10-year lifetime, yet no two were ever seen in exactly the same place in the sky. Astronomers have been able to pinpoint the exact distances of only a dozen GRBs, mainly with the help of the Italian BeppoSAX mission.

GRBs can last from 10 milliseconds to more than 15 minutes. They are followed by afterglows that are visible at X-ray and optical wavelengths for several days. HETE-2 was designed to facilitate observations of these afterglows.

The HETE-2 satellite is being prepared for launch from Kwajalein Atoll in the Republic of the Marshall Islands. It will be deployed to an orbit around 600 kilometers above the Earth by an expendable Pegasus rocket launched with the aid of an L-1011 aircraft. The chosen orbit allows the satellite to race above the equator, circling the Earth 15 times per day along the exact same path.


Within seconds of detecting a burst, HETE-2 will calculate the precise coordinates of the event and transmit its calculations to the nearest of 12 receiving stations girdling the planet, immediately allowing ground-based observers to gather detailed observations of the initial phases of GRBs. The satellite uses a low-rate VHF transmitter to continuously broadcast the burst information; on the ground, an array of listen-only burst alert stations (BAS) receive the data and transmit them to the MIT Control Center. Once received at MIT, burst information is immediately relayed to the GRB Coordinate Distribution Network (GCN) at Goddard Space Flight Center in Greenbelt, MD, for wide distribution through the Internet. Ground-based optical and radio observatories, as well as space telescopes such as Chandra and Hubble, can then follow up with a closer look.

News of a burst will reach the astronomy community in approximately 10-20 seconds, as opposed to hours or days in the past. "Routinely, HETE-2 will provide astronomers with a good chance of seeing a burst while it is still going on," Ricker said. "Using HETE-2's localizations, observatories worldwide will be able to rapidly acquire the burst and study its evolution at all wavelengths." In addition, HETE-2 will determine the location and environment of short bursts, a class of bursts about which little is known.

At MIT, the HETE-2 team includes Ricker, Bob Dill, John Doty, Geoffrey Crew, Roland K. Vanderspek, Joel Villasenor, Glen Monnelly, Francois Martel, Alan Levine, Tye Brady, Nat Butler, Dave Breslau, Nat Butler, Janice Crisafulli, Mike Doucette, Arnaud Dupuy, Rick Foster, Jim Francis, Gene Galton, Greg Huffman, Steve Kissel, Frank LaRosa, Fred Miller, Grigory Prigozhin, Jerry Roberts, Michael Vezie and Pete Young; at Japan's Institute of Physical and Chemical Research, team members are Masaru Matsuoka, Nobuyuki Kawai and Atsumasa Yoshida; at the Centre D'Etude Spatiale des Rayonnements in France, team members are Jean-Luc Atteia, Michel Boer and Gilbert Vedrenne; at the Consiglio Nazionale Delle Richerche at the Instituto Tecnologie E Studio Delle Radiazioni Extraterrestri in Italy, the team member is Graziella Pizzichini; at Los Alamos National Laboratory, team members are Edward E. Fenimore and Mark Galassi; at the University of California at Berkeley, team members are Kevin Hurley and J. Garrett Jernigan; at the University of California at Santa Cruz, Stanford E. Woolsey; at the University of Chicago, team members are Don Lamb and Carlo Graziani; and NASA project scientist at Goddard Space Flight Center is Thomas L. Cline.

In the US, the HETE mission is supported by NASA, which publishes a HETE-2 fact sheet on their web site.

Related Links

Related Topics

More MIT News