Skip to content ↓

Topic

Soft robotics

Download RSS feed: News Articles / In the Media / Audio

Displaying 1 - 15 of 52 news clips related to this topic.
Show:

Popular Science

MIT scientists have created RoboGrocery, a robot prototype that can pack a bag of standard groceries, reports Mack DeGeurin for Popular Science. Using an RGB-D camera equipped with computer vision technology and grippers with pressure sensors, RoboGrocery’s “ability to assess items, determine their delicacy, and pack efficiently without causing damage sets it apart from conventional robotic packers,” explains Prof. Daniela Rus. 

TechCrunch

With Using multimodal sensing and a soft robotic manipulator, MIT scientists have developed an automated system, called RoboGrocery, that can pack groceries of different sizes and weights, reports Brian Heater for TechCrunch. Heater explains that as the soft robotic gripper touches an item, “pressure sensors in the fingers determine that they are, in fact, delicate and therefore should not go at the bottom of the bag — something many of us no doubt learned the hard way. Next, it notes that the soup can is a more rigid structure and sticks it in the bottom of the bag.”

Forbes

Researchers from MIT have developed RoboGrocery, a soft robotic system that “can determine how to pack a grocery item based on its weight, size and shape without causing damage to the item,” reports Jennifer Kite-Powell for Forbes. “This is more than just automation—it's a paradigm shift that enhances precision, reduces waste and adapts seamlessly to the diverse needs of modern retail logistics,” says Prof. Daniela Rus, director of CSAIL. 

BBC

MIT scientists have developed a “four-fingered robotic hand which is capable of rotating balls and toys in any direction and orientation,” reports Maisie Lillywhite for BBC News. “The improvement in dexterity could have significant implications for automating tasks such as handling goods for supermarkets or sorting through waste for recycling,” Lillywhite writes.

Popular Science

Researchers at MIT have developed a soft robot that can be controlled by a weak magnetic field and travel through tiny spaces within the human body, reports Andrew Paul for Popular Science. “Because of their soft materials and relatively simple manipulation, researchers believe such mechanisms could be used in biomedical situations, such as inching through human blood vessels to deliver a drug at a precise location,” explains Paul.

Popular Science

MIT researchers have developed SoftZoo, “an open framework platform that simulated a variety of 3D model animals performing specific tasks in multiple environmental settings,” reports Andrew Paul for Popular Science. “This computational approach to co-designing the soft robot bodies and their brains (that is, their controllers) opens the door to rapidly creating customized machines that are designed for a specific task,” says CSAIL director, Prof. Daniela Rus.

TechCrunch

Researchers at MIT have developed “SoftZoo,” a platform designed to “study the physics, look and locomotion and other aspects of different soft robot models,” reports Brian Heater for TechCrunch. “Dragonflies can perform very agile maneuvers that other flying creatures cannot complete because they have special structures on their wings that change their center of mass when they fly,” says graduate student Tsun-Hsuan Wang. “Our platform optimizes locomotion the same way a dragonfly is naturally more adept at working through its surroundings.”

Mashable

Postdoc Zach Patterson speaks with Mashable about how he and his colleagues are developing a soft robot inspired by a sea turtle that could potentially "offer a closer look at ocean life and assist in further studying aquatic creatures.” Patterson explains that the robotic turtle is meant to be a “platform for exploring the interaction between soft and rigid materials incorporated into a robotic structure.”

Scientific American

Prof. Daniela Rus, director of CSAIL, speaks with Scientific American reporter Nora Bradford about recent advancements in the field of soft robotics. “Building soft robots that can work, heal and grow independently could change many areas of human life,” says Rus. “Soft robot hands are enabling a new age for manufacturing.”  

Mashable

Researchers at MIT developed SoFi, a soft robotic fish designed to study underwater organisms and their environments, reports Mashable. “The soft robotic fish serves a nice purpose for hopefully minimizing impact on the environments that we’re studying and also helps us study different types of behaviors and also study the actual mechanics of these organisms as well,” says graduate student Levi Cai.

Mashable

MIT scientists have created a new tool that can improve robotic wearables, reports Danica D’Souza for Mashable. “The tool provides a pipeline for digital creating pneumatic actuators – devices that power motion with compressed air in many wearables and robotics,” writes D’Souza.

The Wall Street Journal

CSAIL researchers have developed a robotic arm equipped with a sensorized soft brush that can untangle hair, reports Douglas Belkin for The Wall Street Journal. “The laboratory brush is outfitted with sensors that detect tension," writes Belkin. “That tension reads as pain and is used to determine whether to use long strokes or shorter ones.”

TechCrunch

CSAIL researchers have developed a robotic glove that utilizes pneumatic actuation to serve as an assistive wearable, reports Brian Heater for TechCrunch. “Soft pneumatic actuators are intrinsically compliant and flexible, and combined with intelligent materials, have become the backbone of many robots and assistive technologies – and rapid fabrication with our design tool can hopefully increase ease and ubiquity,” says graduate student Yiyue Luo.

Wired

Wired reporter Matt Simon spotlights CSAIL’s ‘Evolution Gym,’ a virtual environment where robot design is entirely computer generated. “There’s a potential to find new, unexpected robot designs, and it also has potential to get more high-performing robots overall,” says Prof. Wojciech Matusik. “If you start from very, very basic structures, how much intelligence can you really create?”

Scientific American

MIT researchers have created a virtual environment for optimizing the design and control of soft robots, reports Prachi Patel for Scientific American. “The future goal is to take any task and say, ‘Design me an optimal robot to complete this task,’” says undergraduate Jagdeep Bhatia.