• Forum participants engage in a discussion to advance CEE curriculum fundamentals. (Left to right:) Donald Webster of Georgia Tech, David Rosowsky of the University of Vermont, Julie Zimmerman of Yale University, and Robert Gilbert of the University of Texas at Austin.

    Forum participants engage in a discussion to advance CEE curriculum fundamentals. (Left to right:) Donald Webster of Georgia Tech, David Rosowsky of the University of Vermont, Julie Zimmerman of Yale University, and Robert Gilbert of the University of Texas at Austin.

    Photo: Maria Iacobo

    Full Screen
  • Lynn Hildemann, professor and chair of civil and environmental engineering at Stanford University, addressed CEE domains and interdisciplinary frontiers.

    Lynn Hildemann, professor and chair of civil and environmental engineering at Stanford University, addressed CEE domains and interdisciplinary frontiers.

    Photo: Maria Iacobo

    Full Screen
  • Markus Buehler, department head of MIT CEE and Jerry McAfee (1940) Professor in Engineering, opens the forum and presents a vision for the future of CEE education.

    Markus Buehler, department head of MIT CEE and Jerry McAfee (1940) Professor in Engineering, opens the forum and presents a vision for the future of CEE education.

    Photo: Maria Iacobo

    Full Screen
  • MIT Professor Saurabh Amin in the classroom

    MIT Professor Saurabh Amin in the classroom

    Photo: Department of Civil and Environmental Engineering

    Full Screen

Forum addresses future of civil and environmental engineering education

Forum participants engage in a discussion to advance CEE curriculum fundamentals. (Left to right:) Donald Webster of Georgia Tech, David Rosowsky of the University of Vermont, Julie Zimmerman of Yale University, and Robert Gilbert of the University of Texas at Austin.

Academic leaders cite urgent need to expand, enhance curriculum to address societal challenges.


Battling climate change and adapting communities to be ready for its effects on the world. Ensuring food and water security for an exploding population. Navigating ever-more congested urban landscapes.

These global concerns and others have been outlined by the National Academies and other institutions as imminent threats. One discipline in particular — civil and environmental engineering — has the history and capability to address these challenges on a large scale.

MIT’s Department of Civil and Environmental Engineering (CEE) took one of the first steps to address the question on how best to prepare a new generation of civil and environmental engineers by organizing a recent one-day workshop, entitled “CEE Education Frontiers Forum,” with invited leaders and educators from 10 leading U.S. institutions, including Stanford University, the University of California at Berkeley, Georgia Tech, and the University of Texas at Austin.

“The discipline of CEE is really at the cusp of a lot of things,” says Saurabh Amin, associate professor and undergraduate officer of CEE at MIT and one of the organizers of the event. “This exceptional group of universities is already addressing today’s challenges, but the field is changing so quickly that our educational efforts need to stay ahead of what we see CEE in need of.”  

During her plenary talk, Anette “Peko” Hosoi, associate dean of engineering and professor of mechanical engineering at MIT, said that it’s not uncommon for engineering curricula to change over time. Each time the curriculum was revised, it was informed by the needs and constraints of that specific period of time, which drove the educational goals forward. Hosoi shared an historical survey of MIT engineering education which showed an overhauled curriculum approximately every 25 years to adjust to the needs of the day. From learning to design iron bridges in 1875 to electrifying the countryside in 1925, “the curriculum was turning over at a fairly rapid timescale,” she said.

“A lot of students come in wanting to change the world,” says Markus J. Buehler, department head of MIT CEE, the Jerry McAfee (1940) Professor in Engineering, and a forum co-organizer. “They want to address climate change, they want to address transportation, they want to address pollution. CEE offers a clear pathway through today’s curriculum to make contributions in these fields, and the workshop fostered discussion into how we can further strengthen our program and provide our students even better skills for their careers after graduation.”

The workshop consisted of two plenary talks, four panel discussions, and a lunch session, all focused on how to make sure CEE students understand and are well-prepared for their post-graduate opportunities, now and into the future. Two subjects addressed throughout the day were the value of an interdisciplinary education and an increased need for excellent interpersonal skills to prepare students for the real world.

As the need for a sustainable future becomes urgent, the required skillset of CEE graduates has also broadened. These skills include foundational knowledge in emerging fields such as computing and machine learning, as well as social responsibility and ethics, and leadership. For example, a well-trained civil or environmental engineer should be able to help design new solutions to make a city capable of withstanding rising sea levels associated with a changed climate, or create sustainable food, water, and energy supply chains. In an increasingly digitized world, speakers pointed out that CEE students should be able to incorporate key concepts such as data analytics and applications of artificial intelligence into their solutions.

“Civil and environmental engineers are defined by our applications … not our tools,” said Mark Stacey, department chair of CEE at UC Berkeley, during the panel on CEE Domains and Interdisciplinary Frontiers. “We bring tools from wherever they emerge.”

MIT’s CEE education is built around three central tenants: rigorous core knowledge of the science behind the discipline, fieldwork that allows students to gain insights into real-world problems, and labs designed to have students synthesize the knowledge and skills they have developed over their other coursework.

“Our curriculum is agile and designed to be adaptive to the needs of students and help them address these grand challenges,” says Amin. “The hope is that as new problems and areas of study arise, our students will be able to tackle whatever area they are interested in. We help students to tailor their coursework based on their individual goals and aspirations. This workshop identified some of the hurdles that may be coming and will help us in preparing for them.”

Nearly all in attendance agreed that the first year of a CEE curriculum was critical to demonstrate to students the possibilities of a future in the profession. One suggestion involved adding experience-based lab work during the first semester to engage students with the field from the get-go.

A similar educational reform is already underway at MIT through the Designing the First Year Experience initiative, headed by Vice Chancellor for Undergraduate and Graduate Education Ian Waitz. Waitz acknowledged the difficulty in changing a curriculum that has been in place for decades, but recognized the importance of addressing the educational and social needs of a changing student body.

“It’s not rocket science,” said Waitz during his talk. “It’s harder than that — it’s people science.”

For example, starting this year MIT CEE began offering new discovery subjects focusing on sustainable cities and climate change for first-year students. The goal is to bring these students into the discussions of grand challenges early on and equip them to make informed choices during their stay at MIT, and beyond.

A number of speakers also mentioned throughout the day that civil and environmental engineers are frequently at the center of civic problem-solving. They must be able to engage with the public, government officials, and engineers and scientists of other backgrounds. Any new curriculum should foster the ability to connect with people of different backgrounds to strengthen leadership skills. Panels on post-grad research opportunities by representatives from the National Science Foundation enforced this point.

Participants agreed the workshop was successful in moving the CEE education conversation forward.

“What we tried to do was … answer questions about what the CEE degree of the future would be,” says Desiree Plata, assistant professor in CEE at MIT and an event co-organizer. “[We] saw a lot of different opinions about that today, so that's great for idea generation. I think there's still a lot of work that needs to be done in terms of how to do it.”

The organizers plan to release a document summarizing the key points from the workshop to act as a jumping-off point for the next round of talks, and will seek further input from students and alumni.

“The next conversation should not start from scratch,” says Amin. “People will have their own hurdles at their own universities, but we believe that now is right time to lead this change.”


Topics: Civil and environmental engineering, School of Engineering, Leadership, Education, teaching, academics, Environment, Special events and guest speakers

Back to the top